Citation: | MA Zihong, ZHANG Huile, SUN Zeyu, CHEN Huimin, YUE Xiaoli. Study on energy absorption characteristics of thin-walled tubes with negative Gaussian curvature[J]. Explosion And Shock Waves, 2022, 42(11): 113101. doi: 10.11883/bzycj-2022-0146 |
[1] |
KARL F G. 关于曲面的一般研究[M]. 陈惠勇, 译. 哈尔滨: 哈尔滨工业大学出版社, 2016: 47–83.
|
[2] |
郭佳民, 刘欣丹, 鲁青青, 等. 一种负高斯曲率索穹顶: CN104631620A[P]. 2015-05-20.
|
[3] |
陈昕, 沈世钊. 负高斯曲率单层网壳的刚度及整体稳定性研究 [J]. 哈尔滨建筑工程学院学报, 1990(2): 80–89.
CHEN X, SHEN S Z. Study on stiffness and global stability of single-layer reticulated shells with negative Gaussian curvature [J]. Journal of Harbin Institute of Architectural Engineering, 1990(2): 80–89.
|
[4] |
李松晏, 郑志军. 高速列车吸能结构设计和耐撞性分析 [J]. 爆炸与冲击, 2015, 35(2): 164–170. DOI: 10.11883/1001-1455(2015)02-0164-0.
LI S Y, ZHENG Z J. Energy absorbing structure design and crashworthiness analysis of high-speed trains [J]. Explosion and Shock Waves, 2015, 35(2): 164–170. DOI: 10.11883/1001-1455(2015)02-0164-0.
|
[5] |
KARAGIOZOVA D, NURICK G N, KIM C Y, et al. Energy absorption of aluminium alloy circular and square tubes under an axial explosive load [J]. Thin-Walled Structures, 2004, 43(6): 956–982. DOI: 10.1016/j.tws.2004.11.002.
|
[6] |
YAMASHITA M, HATTORI T, NISHIMURA N, et al. Quasi-static and dynamic axial crushing of various polygonal tubes [J]. Key Engineering Materials, 2007, 340: 1399–1404. DOI: 10.4028/www.scientific.net/kem.340-341.1399.
|
[7] |
LI J, LIU J, LIU H, et al. A precise theoretical model for laterally crushed hexagonal tubes [J]. Thin-Walled Structures, 2020, 152: 106750. DOI: 10.1016/j.tws.2020.106750.
|
[8] |
ALAVI NIA A. , PARSAPOUR M. Comparative analysis of energy absorption capacity of simple and multi-cell thin-walled tubes with triangular, square, hexagonal and octagonal sections [J]. Thin-Walled Structures, 2014, 74: 155–165. DOI: 10.1016/j.tws.2013.10.005.
|
[9] |
PIRMOHAMMAD S, ESMAEILI-MARZDASHTI S. Multi-objective crashworthiness optimization of square and octagonal bitubal structures including different hole shapes [J]. Thin-Walled Structures, 2019, 139: 126–138. DOI: 10.1016/j.tws.2019.03.004.
|
[10] |
MAMALIS A, MANOLAKOS D, IOANNIDIS M, et al. Finite element simulation of the axial collapse of metallic thin-walled tubes with octagonal cross-section [J]. Thin-Walled Structures, 2003, 41(10): 891–900. DOI: 10.1016/s0263-8231(03)00046-6.
|
[11] |
MAMALIS A G, MANOLAKOS, D E BALDOUKAS A K, et al. Energy dissipation and associated failure modes when axially loading polygonal thin-walled cylinders [J]. Thin-Walled Structures, 1991, 12(1): 17–34. DOI: 10.1016/0263-8231(91)90024-d.
|
[12] |
AL GALIB D, LIMAM A. Experimental and numerical investigation of static and dynamic axial crushing of circular aluminum tubes [J]. Thin-Walled Structures, 2004, 42(8): 1103–1137. DOI: 10.1016/j.tws.2004.03.001.
|
[13] |
路国运, 段晨灏, 雷建平, 等. 金属圆柱壳受大质量低速冲击的屈曲变形 [J]. 爆炸与冲击, 2015, 35(2): 171–176. DOI: 10.11883/1001-1455(2015)02-0171-06.
LU G Y, DUAN C H, LEI J P, et al. Dynamic buckling of the cylindrical shell impacted by large mass with low velocity [J]. Explosion and Shock Waves, 2015, 35(2): 171–176. DOI: 10.11883/1001-1455(2015)02-0171-06.
|
[14] |
张宗华, 刘书田. 多边形薄壁管动态轴向冲击的耐撞性研究[C]//2007中国汽车工程学会年会论文集.2007: 449–455.
|
[15] |
GUILLOW S R, LU G, GRZEBIETA R H. Quasi-static axial compression of thin-walled circular aluminium tubes [J]. International Journal of Mechanical Sciences, 2001, 43(9): 2103–2123. DOI: 10.1016/S0020-7403(01)00031-5.
|
[16] |
ZAREI H R, KRÖGER M. Multiobjective crashworthiness optimization of circular aluminum tubes [J]. Thin-Walled Structures, 2006, 44(3): 301–308. DOI: 10.1016/j.tws.2006.03.010.
|
[17] |
HOU S J, HAN X, SUN G Y, et al. Multiobjective optimization for tapered circular tubes [J]. Thin-Walled Structures, 2011, 49(7): 855–863. DOI: 10.1016/j.tws.2011.02.010.
|
[18] |
MARZBANRAD J, EBRAHIMI M R. Multi-objective optimization of aluminum hollow tubes for vehicle crash energy absorption using a genetic algorithm and neural networks [J]. Thin-Walled Structures, 2011, 49(12): 1605–1615. DOI: 10.1016/j.tws.2011.08.009.
|
[19] |
PALANIVELU S, VAN PAEPEGEM W, DEGRIECK J, et al. Parametric study of crushing parameters and failure patterns of pultruded composite tubes using cohesive elements and seam, part I: central delamination and triggering modelling [J]. Polymer Testing, 2010, 29(6): 729–741. DOI: 10.1016/j.polymertesting.2010.05.
|
[20] |
HA N S, PHAM T M, CHEN W S, et al. Crashworthiness analysis of bio-inspired fractal tree-like multi-cell circular tubes under axial crushing [J]. Thin-Walled Structures, 2021, 169: 108315. DOI: 10.1016/j.tws.2021.108315.
|
[21] |
WIERZBICKI T. Crushing analysis of metal honeycombs [J]. International Journal of Impact Engineering, 1983, 1(2): 157–174. DOI: 10.1016/0734-743x(83)90004-0.
|
[22] |
孔祥韶, 杨豹, 周沪, 等. 基于响应面法的纤维金属层合板抗弹性能优化设计 [J]. 爆炸与冲击, 2022, 42(4): 043301. DOI: 10.11883/bzycj-2021-0146.
KONG X S, YANG B, ZHOU H, et al. Optimal design of ballistic performance of fiber-metal laminates based on the response surface method [J]. Explosion and Shock Waves, 2022, 42(4): 043301. DOI: 10.11883/bzycj-2021-0146.
|