Citation: | ZHOU Lun, SU Xingya, JING Lin, DENG Guide, ZHAO Longmao. Dynamic tensile constitutive relationship and failure behavior of 6061-T6 aluminum alloy[J]. Explosion And Shock Waves, 2022, 42(9): 091407. doi: 10.11883/bzycj-2022-0154 |
[1] |
高玉龙, 孙晓红. 高速列车用6008铝合金动态变形本构与损伤模型参数研究 [J]. 爆炸与冲击, 2021, 41(3): 033101. DOI: 10.11883/bzycj-2020-0119.
GAO Y L, SUN X H. On the parameters of dynamic deformation and damage models of aluminum alloy 6008-T4 used for high-speed railway vehicles [J]. Explosion and Shock Waves, 2021, 41(3): 033101. DOI: 10.11883/bzycj-2020-0119.
|
[2] |
王礼立. 高应变率下材料动态力学性能 [J]. 力学与实践, 1982, 4(1): 9–19, 26.
WANG L L. Dynamic mechanical properties of materials under high strain rate [J]. Mechanics and Engineering, 1982, 4(1): 9–19, 26.
|
[3] |
任冀宾, 汪存显, 张欣玥, 等. 2A97铝锂合金的Johnson-Cook本构模型及失效参数 [J]. 华南理工大学学报(自然科学版), 2019, 47(8): 136–144. DOI: 10.12141/j.issn.1000-565X.180554.
REN J B, WANG C X, ZHANG X Y, et al. Johnson-Cook constitutive model and failure parameters of 2A97 Al-Li alloy [J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(8): 136–144. DOI: 10.12141/j.issn.1000-565X.180554.
|
[4] |
COWPER G R, SYMONDS P S. Strain hardening and strain-rate effect in the impact loading of cantilever beams [R]. Providence, USA: Brown University, 1957.
|
[5] |
JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
|
[6] |
ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. Journal of Applied Physics, 1987, 61(5): 1816–1825. DOI: 10.1063/1.338024.
|
[7] |
JING L, SU X Y, ZHAO L M. The dynamic compressive behavior and constitutive modeling of D1 railway wheel steel over a wide range of strain rates and temperatures [J]. Results in Physics, 2017, 7: 1452–1461. DOI: 10.1016/j.rinp.2017.04.015.
|
[8] |
SU X Y, ZHOU L, JING L, et al. Experimental investigation and constitutive description of railway wheel/rail steels under medium-strain-rate tensile loading [J]. Journal of Materials Engineering and Performance, 2020, 29(3): 2015–2025. DOI: 10.1007/s11665-020-04720-1.
|
[9] |
郭子涛, 高斌, 郭钊, 等. 基于J-C模型的Q235钢的动态本构关系 [J]. 爆炸与冲击, 2018, 38(4): 804–810. DOI: 10.11883/bzycj-2016-0333.
GUO Z T, GAO B, GUO Z, et al. Dynamic constitutive relation based on J-C model of Q235 steel [J]. Explosion and Shock Waves, 2018, 38(4): 804–810. DOI: 10.11883/bzycj-2016-0333.
|
[10] |
张伟, 肖新科, 魏刚. 7A04铝合金的本构关系和失效模型 [J]. 爆炸与冲击, 2011, 31(1): 81–87. DOI: 10.11883/1001-1455(2011)01-0081-07.
ZHANG W, XIAO X K, WEI G. Constitutive relation and fracture model of 7A04 aluminum alloy [J]. Explosion and Shock Waves, 2011, 31(1): 81–87. DOI: 10.11883/1001-1455(2011)01-0081-07.
|
[11] |
贾东, 黄西成, 胡文军, 等. 基于J-C模型的镁合金MB2动静态拉伸破坏行为 [J]. 爆炸与冲击, 2017, 37(6): 1010–1016. DOI: 10.11883/1001-1455(2017)06-1010-07.
JIA D, HUANG X C, HU W J, et al. Fracture behavior of magnesium alloy MB2 under quasi-static and dynamic tension loading based on Johnson-Cook model [J]. Explosion and Shock Waves, 2017, 37(6): 1010–1016. DOI: 10.11883/1001-1455(2017)06-1010-07.
|
[12] |
门建兵, 卢易浩, 蒋建伟, 等. 杆式EFP用钽钨合金JC失效模型参数 [J]. 高压物理学报, 2020, 34(6): 065105. DOI: 10.11858/gywlxb.20200550.
MEN J B, LU Y H, JIANG J W, et al. Johnson-Cook failure model parameters of Tantalum-Tungsten alloy for rod-shaped EFP [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065105. DOI: 10.11858/gywlxb.20200550.
|
[13] |
余万千, 郁锐, 崔世堂. 考虑应力三轴度影响的30CrMnSiNi2A钢韧性断裂研究 [J]. 爆炸与冲击, 2021, 41(3): 031404. DOI: 10.11883/bzycj-2020-0334.
YU W Q, YU R, CUI S T. On ductile fracture of 30CrMnSiNi2A steel considering effects of stress triaxiality [J]. Explosion and Shock Waves, 2021, 41(3): 031404. DOI: 10.11883/bzycj-2020-0334.
|
[14] |
郭子涛, 舒开鸥, 高斌, 等. 基于J-C模型的Q235钢的失效准则 [J]. 爆炸与冲击, 2018, 38(6): 1325–1332. DOI: 10.11883/bzycj-2017-0163.
GUO Z T, SHU K O, GAO B, et al. J-C model based failure criterion and verification of Q235 steel [J]. Explosion and Shock Waves, 2018, 38(6): 1325–1332. DOI: 10.11883/bzycj-2017-0163.
|
[15] |
BOBBILI R, MADHU V. Flow and fracture characteristics of near alpha titanium alloy [J]. Journal of Alloys and Compounds, 2016, 684: 162–170. DOI: 10.1016/j.jallcom.2016.05.155.
|
[16] |
丁向群, 何国求, 陈成澍, 等. 6000系汽车车用铝合金的研究应用进展 [J]. 材料科学与工程学报, 2005, 23(2): 302–305. DOI: 10.3969/j.issn.1673-2812.2005.02.039.
DING X Q, HE G Q, CHEN C S, et al. Advance in studies of 6000 aluminum alloy for automobile [J]. Journal of Materials Science and Engineering, 2005, 23(2): 302–305. DOI: 10.3969/j.issn.1673-2812.2005.02.039.
|
[17] |
AMBRIZ R R, BARRERA G, GARCÍA R, et al. A comparative study of the mechanical properties of 6061-T6 GMA welds obtained by the indirect electric arc (IEA) and the modified indirect electric arc (MIEA) [J]. Materials & Design, 2009, 30(7): 2446–2453. DOI: 10.1016/j.matdes.2008.10.025.
|
[18] |
LEE W S, SHYU J C, CHIOU S T. Effect of strain rate on impact response and dislocation substructure of 6061-T6 aluminum alloy [J]. Scripta Materialia, 1999, 42(1): 51–56. DOI: 10.1016/S1359-6462(99)00308-5.
|
[19] |
ZHU D J, MOBASHER B, RAJAN S D, et al. Characterization of dynamic tensile testing using aluminum alloy 6061-T6 at intermediate strain rates [J]. Journal of Engineering Mechanics, 2011, 137(10): 669–679. DOI: 10.1061/(ASCE)EM.1943-7889.0000264.
|
[20] |
ACHARYA S, GUPTA R K, GHOSH J, et al. High strain rate dynamic compressive behaviour of Al6061-T6 alloys [J]. Materials Characterization, 2017, 127: 185–197. DOI: 10.1016/j.matchar.2017.03.005.
|
[21] |
ODESHI A G, OWOLABI G M, SINGH M N K, et al. Deformation and fracture behavior of alumina particle-reinforced Al 6061-T6 composite during dynamic mechanical loading [J]. Metallurgical and Materials Transactions A, 2007, 38(11): 2674–2680. DOI: 10.1007/s11661-007-9242-2.
|
[22] |
孟宪明, 谢书港, 方锐, 等. B340-590DP双相高强钢板的动态变形行为 [J]. 钢铁研究学报, 2015, 27(6): 51–55. DOI: 10.13228/j.boyuan.issn1001-0963.20140425.
MENG X M, XIE S G, FANG R, et al. Dynamic deformation behavior of B340-590DP steel sheet [J]. Journal of Iron and Steel Research, 2015, 27(6): 51–55. DOI: 10.13228/j.boyuan.issn1001-0963.20140425.
|
[23] |
YAN S L, YANG H, LI H W, et al. Variation of strain rate sensitivity of an aluminum alloy in a wide strain rate range: mechanism analysis and modeling [J]. Journal of Alloys and Compounds, 2016, 688: 776–786. DOI: 10.1016/j.jallcom.2016.07.077.
|
[24] |
SUO T, CHEN Y Z, LI Y L, et al. Strain rate sensitivity and deformation kinetics of ECAPed aluminium over a wide range of strain rates [J]. Materials Science and Engineering A, 2013, 560: 545–551. DOI: 10.1016/j.msea.2012.09.100.
|
[25] |
谢凡, 张涛, 陈继恩, 等. 应力三轴度的有限元计算修正 [J]. 爆炸与冲击, 2012, 32(1): 8–14. DOI: 10.11883/1001-1455(2012)01-0008-07.
XIE F, ZHANG T, CHEN J E, et al. Updating of the stress triaxiality by finite element analysis [J]. Explosion and Shock Waves, 2012, 32(1): 8–14. DOI: 10.11883/1001-1455(2012)01-0008-07.
|
[26] |
BAO Y B, WIERZBICKI T. On fracture locus in the equivalent strain and stress triaxiality space [J]. International Journal of Mechanical Sciences, 2004, 46(1): 81–98. DOI: 10.1016/j.ijmecsci.2004.02.006.
|
[27] |
BRIDGMAN P W. Studies in large plastic flow and fracture with special emphasis on the effects of hydrostatic pressure [M]. New York, USA: McGraw-Hill, 1952.
|
[28] |
贾东, 黄西成, 莫军. 基于应变路径和分布效应的应力三轴度确定方法 [J]. 科学技术与工程, 2013, 13(10): 2625-2629; 2634. DOI: 10.3969/j.issn.1671-1815.2013.10.002.
JIA D, HUANG X C, MO J. A method to determine stress triaxiality based on strain path and distribution effect [J]. Science Technology and Engineering, 2013, 13(10): 2625-2629; 2634. DOI: 10.3969/j.issn.1671-1815.2013.10.002.
|
[29] |
衣海娇, 甄莹, 曹宇光, 等. 6061-T6铝合金断裂应变与应力三轴度关系研究 [J]. 机械强度, 2020, 42(3): 551–558. DOI: 10.16579/j.issn.1001.9669.2020.03.007.
YI H J, ZHEN Y, CAO Y G, et al. Research on the relationship between fracture strain and triaxiality of 6061-T6 aluminum alloy [J]. Journal of Mechanical Strength, 2020, 42(3): 551–558. DOI: 10.16579/j.issn.1001.9669.2020.03.007.
|