ZhengYu-xuan, ZhouFeng-hua, HuShi-sheng. Effectsofperiodically-distributeddefectsonductilefragmentationprocessofmaterialsunderhighstrain-ratetension[J]. Explosion And Shock Waves, 2013, 33(2): 113-119. doi: 10.11883/1001-1455(2013)02-0113-07
Citation: ZHOU Lun, SU Xingya, JING Lin, DENG Guide, ZHAO Longmao. Dynamic tensile constitutive relationship and failure behavior of 6061-T6 aluminum alloy[J]. Explosion And Shock Waves, 2022, 42(9): 091407. doi: 10.11883/bzycj-2022-0154

Dynamic tensile constitutive relationship and failure behavior of 6061-T6 aluminum alloy

doi: 10.11883/bzycj-2022-0154
  • Received Date: 2022-04-08
  • Rev Recd Date: 2022-08-23
  • Available Online: 2022-09-05
  • Publish Date: 2022-09-29
  • The quasi-static and dynamic tensile mechanical properties of 6061-T6 aluminum alloy in a strain rate range from 0.001 s−1 to 100 s−1 were investigated by using a HMH-206 high-speed material testing machine. The stress-strain response characteristics and strain rate sensitivity of the 6061-T6 aluminum alloy were analyzed, and the effects of strain rate on the flow stress and strain rate sensitivity index were discussed. Based on the experimental results, the Johnson-Cook constitutive model was modified to describe the plastic flow characteristics of the 6061-T6 aluminum alloy under dynamic tensile loading. In addition, the relationship between the fracture strain and stress triaxiality of the notched specimens was established by experiments and simulations, and the values of the parameters in the Johnson-Cook failure model were obtained according to the experimental and simulation results. The results show that the 6061-T6 aluminum alloy exhibits obvious strain hardening characteristics and strain rate strengthening effects, and the flow stress increases with the increase of true strain and strain rate. The strain rate sensitivity index of the material is affected by the coupling effect of strain and strain rate. During the tensile process, the Mises stress of the notched specimens was symmetrically distributed about the minimum cross-section, and the stress triaxiality at the minimum cross-section was symmetrically distributed about the center line along the width and thickness directions. Furthermore, the fracture strain of the material decreases gradually with the increase of the stress triaxiality, and increases approximately linearly with the increasing dimensionless logarithmic strain rate. The plastic flow characteristics of the 6061-T6 aluminum alloy can be described by the modified Johnson-Cook constitutive model, and the parameters in the Johnson-Cook failure model of the material can be obtained by the experiments and simulations on the notched specimens. The verification results indicate that the established models can predict the tensile mechanical response and fracture failure behavior of the 6061-T6 aluminum alloy under a complex stress state.
  • [1]
    高玉龙, 孙晓红. 高速列车用6008铝合金动态变形本构与损伤模型参数研究 [J]. 爆炸与冲击, 2021, 41(3): 033101. DOI: 10.11883/bzycj-2020-0119.

    GAO Y L, SUN X H. On the parameters of dynamic deformation and damage models of aluminum alloy 6008-T4 used for high-speed railway vehicles [J]. Explosion and Shock Waves, 2021, 41(3): 033101. DOI: 10.11883/bzycj-2020-0119.
    [2]
    王礼立. 高应变率下材料动态力学性能 [J]. 力学与实践, 1982, 4(1): 9–19, 26.

    WANG L L. Dynamic mechanical properties of materials under high strain rate [J]. Mechanics and Engineering, 1982, 4(1): 9–19, 26.
    [3]
    任冀宾, 汪存显, 张欣玥, 等. 2A97铝锂合金的Johnson-Cook本构模型及失效参数 [J]. 华南理工大学学报(自然科学版), 2019, 47(8): 136–144. DOI: 10.12141/j.issn.1000-565X.180554.

    REN J B, WANG C X, ZHANG X Y, et al. Johnson-Cook constitutive model and failure parameters of 2A97 Al-Li alloy [J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(8): 136–144. DOI: 10.12141/j.issn.1000-565X.180554.
    [4]
    COWPER G R, SYMONDS P S. Strain hardening and strain-rate effect in the impact loading of cantilever beams [R]. Providence, USA: Brown University, 1957.
    [5]
    JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [6]
    ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. Journal of Applied Physics, 1987, 61(5): 1816–1825. DOI: 10.1063/1.338024.
    [7]
    JING L, SU X Y, ZHAO L M. The dynamic compressive behavior and constitutive modeling of D1 railway wheel steel over a wide range of strain rates and temperatures [J]. Results in Physics, 2017, 7: 1452–1461. DOI: 10.1016/j.rinp.2017.04.015.
    [8]
    SU X Y, ZHOU L, JING L, et al. Experimental investigation and constitutive description of railway wheel/rail steels under medium-strain-rate tensile loading [J]. Journal of Materials Engineering and Performance, 2020, 29(3): 2015–2025. DOI: 10.1007/s11665-020-04720-1.
    [9]
    郭子涛, 高斌, 郭钊, 等. 基于J-C模型的Q235钢的动态本构关系 [J]. 爆炸与冲击, 2018, 38(4): 804–810. DOI: 10.11883/bzycj-2016-0333.

    GUO Z T, GAO B, GUO Z, et al. Dynamic constitutive relation based on J-C model of Q235 steel [J]. Explosion and Shock Waves, 2018, 38(4): 804–810. DOI: 10.11883/bzycj-2016-0333.
    [10]
    张伟, 肖新科, 魏刚. 7A04铝合金的本构关系和失效模型 [J]. 爆炸与冲击, 2011, 31(1): 81–87. DOI: 10.11883/1001-1455(2011)01-0081-07.

    ZHANG W, XIAO X K, WEI G. Constitutive relation and fracture model of 7A04 aluminum alloy [J]. Explosion and Shock Waves, 2011, 31(1): 81–87. DOI: 10.11883/1001-1455(2011)01-0081-07.
    [11]
    贾东, 黄西成, 胡文军, 等. 基于J-C模型的镁合金MB2动静态拉伸破坏行为 [J]. 爆炸与冲击, 2017, 37(6): 1010–1016. DOI: 10.11883/1001-1455(2017)06-1010-07.

    JIA D, HUANG X C, HU W J, et al. Fracture behavior of magnesium alloy MB2 under quasi-static and dynamic tension loading based on Johnson-Cook model [J]. Explosion and Shock Waves, 2017, 37(6): 1010–1016. DOI: 10.11883/1001-1455(2017)06-1010-07.
    [12]
    门建兵, 卢易浩, 蒋建伟, 等. 杆式EFP用钽钨合金JC失效模型参数 [J]. 高压物理学报, 2020, 34(6): 065105. DOI: 10.11858/gywlxb.20200550.

    MEN J B, LU Y H, JIANG J W, et al. Johnson-Cook failure model parameters of Tantalum-Tungsten alloy for rod-shaped EFP [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065105. DOI: 10.11858/gywlxb.20200550.
    [13]
    余万千, 郁锐, 崔世堂. 考虑应力三轴度影响的30CrMnSiNi2A钢韧性断裂研究 [J]. 爆炸与冲击, 2021, 41(3): 031404. DOI: 10.11883/bzycj-2020-0334.

    YU W Q, YU R, CUI S T. On ductile fracture of 30CrMnSiNi2A steel considering effects of stress triaxiality [J]. Explosion and Shock Waves, 2021, 41(3): 031404. DOI: 10.11883/bzycj-2020-0334.
    [14]
    郭子涛, 舒开鸥, 高斌, 等. 基于J-C模型的Q235钢的失效准则 [J]. 爆炸与冲击, 2018, 38(6): 1325–1332. DOI: 10.11883/bzycj-2017-0163.

    GUO Z T, SHU K O, GAO B, et al. J-C model based failure criterion and verification of Q235 steel [J]. Explosion and Shock Waves, 2018, 38(6): 1325–1332. DOI: 10.11883/bzycj-2017-0163.
    [15]
    BOBBILI R, MADHU V. Flow and fracture characteristics of near alpha titanium alloy [J]. Journal of Alloys and Compounds, 2016, 684: 162–170. DOI: 10.1016/j.jallcom.2016.05.155.
    [16]
    丁向群, 何国求, 陈成澍, 等. 6000系汽车车用铝合金的研究应用进展 [J]. 材料科学与工程学报, 2005, 23(2): 302–305. DOI: 10.3969/j.issn.1673-2812.2005.02.039.

    DING X Q, HE G Q, CHEN C S, et al. Advance in studies of 6000 aluminum alloy for automobile [J]. Journal of Materials Science and Engineering, 2005, 23(2): 302–305. DOI: 10.3969/j.issn.1673-2812.2005.02.039.
    [17]
    AMBRIZ R R, BARRERA G, GARCÍA R, et al. A comparative study of the mechanical properties of 6061-T6 GMA welds obtained by the indirect electric arc (IEA) and the modified indirect electric arc (MIEA) [J]. Materials & Design, 2009, 30(7): 2446–2453. DOI: 10.1016/j.matdes.2008.10.025.
    [18]
    LEE W S, SHYU J C, CHIOU S T. Effect of strain rate on impact response and dislocation substructure of 6061-T6 aluminum alloy [J]. Scripta Materialia, 1999, 42(1): 51–56. DOI: 10.1016/S1359-6462(99)00308-5.
    [19]
    ZHU D J, MOBASHER B, RAJAN S D, et al. Characterization of dynamic tensile testing using aluminum alloy 6061-T6 at intermediate strain rates [J]. Journal of Engineering Mechanics, 2011, 137(10): 669–679. DOI: 10.1061/(ASCE)EM.1943-7889.0000264.
    [20]
    ACHARYA S, GUPTA R K, GHOSH J, et al. High strain rate dynamic compressive behaviour of Al6061-T6 alloys [J]. Materials Characterization, 2017, 127: 185–197. DOI: 10.1016/j.matchar.2017.03.005.
    [21]
    ODESHI A G, OWOLABI G M, SINGH M N K, et al. Deformation and fracture behavior of alumina particle-reinforced Al 6061-T6 composite during dynamic mechanical loading [J]. Metallurgical and Materials Transactions A, 2007, 38(11): 2674–2680. DOI: 10.1007/s11661-007-9242-2.
    [22]
    孟宪明, 谢书港, 方锐, 等. B340-590DP双相高强钢板的动态变形行为 [J]. 钢铁研究学报, 2015, 27(6): 51–55. DOI: 10.13228/j.boyuan.issn1001-0963.20140425.

    MENG X M, XIE S G, FANG R, et al. Dynamic deformation behavior of B340-590DP steel sheet [J]. Journal of Iron and Steel Research, 2015, 27(6): 51–55. DOI: 10.13228/j.boyuan.issn1001-0963.20140425.
    [23]
    YAN S L, YANG H, LI H W, et al. Variation of strain rate sensitivity of an aluminum alloy in a wide strain rate range: mechanism analysis and modeling [J]. Journal of Alloys and Compounds, 2016, 688: 776–786. DOI: 10.1016/j.jallcom.2016.07.077.
    [24]
    SUO T, CHEN Y Z, LI Y L, et al. Strain rate sensitivity and deformation kinetics of ECAPed aluminium over a wide range of strain rates [J]. Materials Science and Engineering A, 2013, 560: 545–551. DOI: 10.1016/j.msea.2012.09.100.
    [25]
    谢凡, 张涛, 陈继恩, 等. 应力三轴度的有限元计算修正 [J]. 爆炸与冲击, 2012, 32(1): 8–14. DOI: 10.11883/1001-1455(2012)01-0008-07.

    XIE F, ZHANG T, CHEN J E, et al. Updating of the stress triaxiality by finite element analysis [J]. Explosion and Shock Waves, 2012, 32(1): 8–14. DOI: 10.11883/1001-1455(2012)01-0008-07.
    [26]
    BAO Y B, WIERZBICKI T. On fracture locus in the equivalent strain and stress triaxiality space [J]. International Journal of Mechanical Sciences, 2004, 46(1): 81–98. DOI: 10.1016/j.ijmecsci.2004.02.006.
    [27]
    BRIDGMAN P W. Studies in large plastic flow and fracture with special emphasis on the effects of hydrostatic pressure [M]. New York, USA: McGraw-Hill, 1952.
    [28]
    贾东, 黄西成, 莫军. 基于应变路径和分布效应的应力三轴度确定方法 [J]. 科学技术与工程, 2013, 13(10): 2625-2629; 2634. DOI: 10.3969/j.issn.1671-1815.2013.10.002.

    JIA D, HUANG X C, MO J. A method to determine stress triaxiality based on strain path and distribution effect [J]. Science Technology and Engineering, 2013, 13(10): 2625-2629; 2634. DOI: 10.3969/j.issn.1671-1815.2013.10.002.
    [29]
    衣海娇, 甄莹, 曹宇光, 等. 6061-T6铝合金断裂应变与应力三轴度关系研究 [J]. 机械强度, 2020, 42(3): 551–558. DOI: 10.16579/j.issn.1001.9669.2020.03.007.

    YI H J, ZHEN Y, CAO Y G, et al. Research on the relationship between fracture strain and triaxiality of 6061-T6 aluminum alloy [J]. Journal of Mechanical Strength, 2020, 42(3): 551–558. DOI: 10.16579/j.issn.1001.9669.2020.03.007.
  • Relative Articles

    [1]TAN Yi, YANG Shuyi, SUN Yaobing, GUO Xiaojun. Determination of constitutive relation and fracture criterion parameters for ZL114A aluminum alloy[J]. Explosion And Shock Waves, 2024, 44(1): 013104. doi: 10.11883/bzycj-2022-0531
    [2]SU Xingya, ZHOU Lun, JING Lin, DENG Guide, ZHAO Longmao. Dynamic compressive mechanical properties and constitutive models of flexible polyurethane foam[J]. Explosion And Shock Waves, 2022, 42(9): 091410. doi: 10.11883/bzycj-2022-0201
    [3]ZHU Lei, LIU Yang, MENG Jinhui, LI Zhiguo, HU Jianbo, LI Guoping, WANG Yonggang. Dynamic mechanical properties and constitutive relationship of selective laser melted Ti-6Al-4V alloy[J]. Explosion And Shock Waves, 2022, 42(9): 091405. doi: 10.11883/bzycj-2021-0227
    [4]XI Shangbin, SU Yu. Phase-field simulation of microstructural dynamics in NiTi shape memory alloys and their intrinsic strain rate sensitivities[J]. Explosion And Shock Waves, 2022, 42(9): 091403. doi: 10.11883/bzycj-2021-0461
    [5]GAO Yulong, SUN Xiaohong. On the parameters of dynamic deformation and damage models of aluminum alloy 6008-T4 used for high-speed railway vehicles[J]. Explosion And Shock Waves, 2021, 41(3): 033101. doi: 10.11883/bzycj-2020-0119
    [6]ZHANG Weiqi, XU Zejian, SUN Zhongyue, TONG Yi, HUANG Fenglei. Dynamic shear behavior and failure mechanism of Ti-6Al-4V at high strain rates[J]. Explosion And Shock Waves, 2018, 38(5): 1137-1144. doi: 10.11883/bzycj-2017-0107
    [7]GUO Zitao, GAO Bin, GUO Zhao, ZHANG Wei. Dynamic constitutive relation based on J-C model of Q235 steel[J]. Explosion And Shock Waves, 2018, 38(4): 804-810. doi: 10.11883/bzycj-2016-0333
    [8]GUO Pengcheng, LI Jian, CAO Shufen, XU Congchang, LIU Zhiwen, LI Luoxing. Deformation behavior and microstructure evolution of an AM80 magnesium alloy at large strain rate range[J]. Explosion And Shock Waves, 2018, 38(3): 586-595. doi: 10.11883/bzycj-2016-0266
    [9]Xi Xulong, Bai Chunyu, Liu Xiaochuan, Mu Rangke, Wang Jizhen. Dynamic mechanical properties of 2A16-T4 aluminum alloy at wide-ranging strain rates[J]. Explosion And Shock Waves, 2017, 37(5): 871-878. doi: 10.11883/1001-1455(2017)05-0871-08
    [10]Xu Xiaodong, Li Hualiang, Zhang Tao. Parameters for the material failure model based on Charpy impact test[J]. Explosion And Shock Waves, 2016, 36(1): 57-63. doi: 10.11883/1001-1455(2016)01-0057-07
    [11]Zhang Long-hui, Zhang Xiao-qing, Yao Xiao-hu, Zang Shu-guang. Constitutive model of transparent aviation polyurethane at high strain rates[J]. Explosion And Shock Waves, 2015, 35(1): 51-56. doi: 10.11883/1001-1455(2015)01-0051-06
    [12]Shi Fei-fei, Suo Tao, Hou Bing, Li Yu-long. Strain rate and temperature sensitivity and constitutive model of YB-2 of aeronautical acrylic polymer[J]. Explosion And Shock Waves, 2015, 35(6): 769-776. doi: 10.11883/1001-1455(2015)06-0769-08
    [13]ZhaoGuang-ming, XieLi-xiang, MengXiang-rui. Aconstitutivemodelforsoftrockunderimpactload[J]. Explosion And Shock Waves, 2013, 33(2): 126-132. doi: 10.11883/1001-1455(2013)02-0126-07
    [14]ZHANG Wei, XIAO Xin-ke, WEI Gang. Constitutiverelationandfracturemodelof7A04aluminumalloy[J]. Explosion And Shock Waves, 2011, 31(1): 81-87. doi: 10.11883/1001-1455(2011)01-0081-07
    [15]LANG Lin, CHEN Xiao-wei, LEI Jing-song. Numericalsimulationsonlongrodsandsegmentedrods penetratingintosteeltarget[J]. Explosion And Shock Waves, 2011, 31(2): 127-134. doi: 10.11883/1001-1455(2011)02-0127-08
    [16]LIN Mu-sen, PANG Bao-jun, ZHANG Wei, CHI Run-qiang. Experimental investigation on a dynamic constitutive relationship of 5A06 Al alloy[J]. Explosion And Shock Waves, 2009, 29(3): 306-311. doi: 10.11883/1001-1455(2009)03-0306-06
    [17]LIU Ming-shuang, LI Yu-long, TAO Liang, XU Fei, CHENG Lai-fei. A strain-rate-dependent dynamic constitutive model of 2D-C/SiC composites[J]. Explosion And Shock Waves, 2008, 28(5): 421-426. doi: 10.11883/1001-1455(2008)05-0421-06
  • Cited by

    Periodical cited type(9)

    1. 郭维诚,吴杰,郭淼现,孙启梦. SiCp/Al超低温材料流动行为和本构模型构建. 材料导报. 2025(04): 204-211 .
    2. 牛江,李胜斌,张应龙. 基于Johnson-Cook模型的Q345R钢压力容器形变预测. 塑性工程学报. 2025(02): 179-186 .
    3. 谭毅,杨书仪,孙要兵,郭小军. ZL114A铝合金本构关系与失效准则参数的确定. 爆炸与冲击. 2024(01): 88-107 . 本站查看
    4. 刘向征,王建哲,喻赛,李文炎,梁天开. 车用6082铝合金型材断裂失效行为研究. 汽车工艺与材料. 2024(02): 52-58 .
    5. 张艺坤,朱志武. 7075铝合金的能量耗散规律及动态损伤本构模型. 四川轻化工大学学报(自然科学版). 2024(01): 1-8 .
    6. 唐学斌,吴浩,卢海涛,吴耀金. SiC/6061铝/UHMWPE纤维复合装甲抗斜侵彻性能研究. 机械设计与制造工程. 2024(07): 97-101 .
    7. 熊淑秋,姚君豪. 铝合金挤压型材的拉伸失效行为研究. 兵器材料科学与工程. 2024(05): 162-167 .
    8. 鲁渴伟,敬霖. 道砟冲击下高速列车设备舱底板的动态响应. 高压物理学报. 2023(04): 112-124 .
    9. 王明扬,郑宇轩,李天鹏,程春,王远超. 分段弹芯对陶瓷/钢复合装甲的侵彻行为. 兵工学报. 2023(12): 3667-3675 .

    Other cited types(8)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (1015) PDF downloads(197) Cited by(17)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return