Volume 43 Issue 5
May  2023
Turn off MathJax
Article Contents
WEI Jianhui, LI Xu, HUANG Wei, XU Hongjian, FANG Bopeng. Dynamic response and failure of sandwich beams with graded metal foam core under high-velocity impact[J]. Explosion And Shock Waves, 2023, 43(5): 053301. doi: 10.11883/bzycj-2022-0156
Citation: WEI Jianhui, LI Xu, HUANG Wei, XU Hongjian, FANG Bopeng. Dynamic response and failure of sandwich beams with graded metal foam core under high-velocity impact[J]. Explosion And Shock Waves, 2023, 43(5): 053301. doi: 10.11883/bzycj-2022-0156

Dynamic response and failure of sandwich beams with graded metal foam core under high-velocity impact

doi: 10.11883/bzycj-2022-0156
  • Received Date: 2022-04-16
  • Rev Recd Date: 2022-06-06
  • Available Online: 2022-06-07
  • Publish Date: 2023-05-05
  • The dynamic response and failure of sandwich beams with gradient metal foam core subjected to high-velocity impact are studied experimentally. The impact resistance of five sandwich beams with different density gradient arrangements but the same surface density composed of three aluminum foams with different densities is analyzed. All the sandwich beams are simply-clamped. Combined with the quasi-static three-point bending tests, the impact resistance of the gradient sandwich beams is evaluated in terms of dynamic deformation and failure modes by considering the effects of core density gradient and impulsive intensity. The results show that the density gradient effect significantly influences the dynamic response and failure mode. The initial failure mode plays an important role in the structural response and the predominant energy absorption mechanism. Since the impact condition can not produce the local compression of the medium-density core, the initial failure mode of the uniform and negative gradient sandwich structures is the overall bending deformation, while the local core compression is the initial failure mode of the other structures with weak cores located in the first two layers. When the impulsive intensity is low, the gradient sandwich beam has superior impact resistance to the uniform counterpart. With increasing intensity, once a critical intensity is exceeded, the gradient sandwich beam shows low bending resistance to the uniform counterpart. Therefore, the optimal design of the core density gradient can efficiently improve the impact resistance of the sandwich beams under the high-velocity impact, which is a valuable reference for engineering applications.
  • loading
  • [1]
    SUN Y, LI Q M. Dynamic compressive behaviour of cellular materials: a review of phenomenon, mechanism and modelling [J]. International Journal of Impact Engineering, 2018, 112: 74–115. DOI: 10.1016/j.ijimpeng.2017.10.006.
    [2]
    LIU Z, MEYERS M A, ZHANG Z, et al. Functional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applications [J]. Progress in Materials Science, 2017, 88: 467–498. DOI: 10.1016/j.pmatsci.2017.04.013.
    [3]
    王根伟, 刘冕, 宋辉, 等. 冲击载荷下径向密度排布对泡沫金属力学性能影响的研究 [J]. 爆炸与冲击, 2020, 40(7): 071401. DOI: 10.11883/bzycj-2019-0403.

    WANG G W, LIU M, SONG H, et al. Influence of radial density arrangement on mechanical properties of metal foam under impact loading [J]. Explosion and Shock Waves, 2020, 40(7): 071401. DOI: 10.11883/bzycj-2019-0403.
    [4]
    叶楠, 张伟, 黄威, 等. PVC夹芯板在冲击载荷下的动态响应与失效模式 [J]. 爆炸与冲击, 2017, 37(1): 37–45. DOI: 10.11883/1001-1455(2017)01-0037-09.

    YE N, ZHANG W, HUANG W, et al. Dynamic response and failure mode of PVC sandwich plates subjected to impact loading [J]. Explosion and Shock Waves, 2017, 37(1): 37–45. DOI: 10.11883/1001-1455(2017)01-0037-09.
    [5]
    敬霖, 王志华, 赵隆茂. 多孔金属及其夹芯结构力学性能的研究进展 [J]. 力学与实践, 2015, 37(1): 1–24. DOI: 10.6052/1000-0879-14-180.

    JING L, WANG Z H, ZHAO L M. Advances in studies of the mechanical performance of cellular metals and related sandwich structures [J]. Mechanics in Engineering, 2015, 37(1): 1–24. DOI: 10.6052/1000-0879-14-180.
    [6]
    WANG E, LI Q, SUN G. Computational analysis and optimization of sandwich panels with homogeneous and graded foam cores for blast resistance [J]. Thin-Walled Structures, 2020, 147: 106494. DOI: 10.1016/j.tws.2019.106494.
    [7]
    CUI L, KIERNAN S, GILCHRIST M D. Designing the energy absorption capacity of functionally graded foam materials [J]. Materials Science and Engineering A: Structural Materials: Properties, 2009, 507: 215–225. DOI: 10.1016/j.msea.2008.12.011.
    [8]
    HUANG W, XU H, FAN Z, et al. Compressive response of composite ceramic particle-reinforced polyurethane foam [J]. Polymer Testing, 2020, 87: 106514. DOI: 10.1016/j.polymertesting.2020.106514.
    [9]
    DESHPANDE V S, FLECK N A. Isotropic constitutive models for metallic foams [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(6/7): 1253–1283. DOI: 10.1016/S0022-5096(99)00082-4.
    [10]
    DANIEL I M, CHO J M, WERNER B T. Characterization and modeling of stain-rate-dependent behavior of polymeric foams [J]. Composites Part A: Applied Science and Manufacturing, 2013, 45: 70–78. DOI: 10.1016/j.compositesa.2012.10.003.
    [11]
    RADFORD D D, MCSHANE G J, DESHPANDE V S, et al. The response of clamped sandwich plates with metallic foam cores to simulated blast loading [J]. International Journal of Solids & Structures, 2006, 43: 2243–2259.
    [12]
    QIU X, DESHPANDE V S, FLECK N A. Impulsive loading of clamped monolithic and sandwich beams over a central patch [J]. Journal of the Mechanics and Physics of Solids, 2005, 53: 1015–1046. DOI: 10.1016/j.jmps.2004.12.004.
    [13]
    APETRE N A, SANKAR B V, AMBUR D R. Low-velocity impact response of sandwich beams with functionally graded core [J]. International Journal of Solids and Structures, 2006, 43(9): 2479–2496. DOI: 10.1016/j.ijsolstr.2005.06.003.
    [14]
    JING L, SU X, CHEN D, et al. Experimental and numerical study of sandwich beams with layered-gradient foam cores under low-velocity impact [J]. Thin-Walled Structures, 2019, 135: 227–244. DOI: 10.1016/j.tws.2018.11.011.
    [15]
    ZHANG W, QIN Q, LI K, et al. Effect of stepwise gradient on dynamic failure of composite sandwich beams with metal foam core subject to low-velocity impact [J]. International Journal of Solids and Structures, 2021, 228: 111125. DOI: 10.1016/j.ijsolstr.2021.111125.
    [16]
    苏兴亚, 敬霖, 赵隆茂. 爆炸载荷下分层梯度泡沫铝夹芯板的失效模式与抗冲击性能 [J]. 爆炸与冲击, 2019, 39(6): 063103. DOI: 10.11883/bzycj-2018-0198.

    SU X Y, JING L, ZHAO L M. Failure modes and shock resistance of sandwich panels with layered-gradient aluminum foam cores under air-blast loading [J]. Explosion and Shock Waves, 2019, 39(6): 063103. DOI: 10.11883/bzycj-2018-0198.
    [17]
    ZHOU X F, JING L. Deflection analysis of clamped square sandwich panels with layered-gradient foam cores under blast loading [J]. Thin-Walled Structures, 2020, 157: 107141. DOI: 10.1016/j.tws.2020.107141.
    [18]
    RADFORD D D, DESHPANDE V S, FLECK N A. The use of metal foam projectiles to simulate shock loading on a structure [J]. International Journal of Impact Engineering, 2005, 31(9): 1152–1171. DOI: 10.1016/j.ijimpeng.2004.07.012.
    [19]
    FANG B P, HUANG W, XU H J, et al. High-velocity impact resistance of stepwise gradient sandwich beams with metal foam cores [J]. Thin-Walled Structures, 2022, 181: 110054. DOI: 10.1016/j.tws.2022.110054.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (695) PDF downloads(294) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return