Volume 43 Issue 5
May  2023
Turn off MathJax
Article Contents
ZHAO Haonan, FANG Hongyuan, ZHAO Xiaohua, WANG Gaohui. Analysis on the blast resistance of polymer composite slabs under contact explosions[J]. Explosion And Shock Waves, 2023, 43(5): 052201. doi: 10.11883/bzycj-2022-0161
Citation: ZHAO Haonan, FANG Hongyuan, ZHAO Xiaohua, WANG Gaohui. Analysis on the blast resistance of polymer composite slabs under contact explosions[J]. Explosion And Shock Waves, 2023, 43(5): 052201. doi: 10.11883/bzycj-2022-0161

Analysis on the blast resistance of polymer composite slabs under contact explosions

doi: 10.11883/bzycj-2022-0161
  • Received Date: 2022-04-15
  • Rev Recd Date: 2022-06-21
  • Available Online: 2022-06-24
  • Publish Date: 2023-05-05
  • Polymer materials have the characteristics of fast forming and good expansion performance. Their composite structures with gravel and reinforcement have obvious advantages in foundation treatment and urban road void removal and reinforcement. As reported in this paper, polymer gravel slabs and reinforced polymer slabs were designed and manufactured, and experimental study under contact explosion impact was carried out. The damage characteristics of the two kinds of slabs were investigated through the damage sizes and the measured shock wave data. Based on the ANSYS/AUTODYN nonlinear explicit finite element program, the damage modes and damage diameters of the reinforced polymer slabs were explored, and compared with the experimental results to verify the accuracy and applicability of the established finite element model. The sensitivity of the reinforced polymer slabs to explosive quantity and slab thickness was analyzed parametrically, and the prediction formula of the failure diameter of the top surface and bottom surface of the reinforced polymer slab was proposed by using a multi-parameter regression procedure. The results show that under the action of air contact explosion, the damage mode of the polymer gravel slab is mainly local collapse and perforation at the contact part. Under the impact load of contact explosion, punching and cutting explosion pits appear on the top surface of the slab, tensile failure and collapse area occur on the bottom surface, and a through failure hole is formed in the center of the slab, in addition to some damage cracks. Under the action of air contact explosion, the reinforced polymer slab mainly exhibits crater damage on the top surface, spalling damage on the bottom surface and central punching perforation damage. The reinforced polymer slab has a good attenuation effect on the explosion shock wave. The diffuse reflection effect of the closed bubble in the polymer structure on the shock wave can absorb more energy to alleviate the explosion shock wave, indicating that the polymer has the potential to be applied to the anti-explosion shock protection.
  • loading
  • [1]
    CHAUDHARI A, GITE V, RAJPUT S, et al. Development of eco-friendly polyurethane coatings based on neem oil polyetheramide [J]. Industrial Crops and Products, 2013, 50: 550–556. DOI: 10.1016/j.indcrop.2013.08.018.
    [2]
    CHEN J, YIN X J, WANG H, et al. Evaluation of durability and functional performance of porous polyurethane mixture in porous pavement [J]. Journal of Cleaner Production, 2018, 188: 12–19. DOI: 10.1016/j.jclepro.2018.03.297.
    [3]
    WANG F M, SHI M S, LI H J, et al. Experimental study on the anti-permeability properties of polymer grouting materials [J]. Advanced Materials Research, 2011, 284/285/286: 1952–1955. DOI: 10.4028/www.scientific.net/AMR.284-286.1952.
    [4]
    FANG H Y, SU Y J, DU X M, et al. Experimental and numerical investigation on repairing effect of polymer grouting for settlement of high-speed railway unballasted track [J]. Applied Sciences, 2019, 9(21): 4496. DOI: 10.3390/app9214496.
    [5]
    刁龙. 高速公路软土路基不均匀沉降处治方法及效果评价 [J]. 交通世界, 2021(30): 106–107. DOI: 10.16248/j.cnki.11-3723/u.2021.30.049.

    DIAO L. Treatment method and effect evaluation of uneven settlement of expressway soft soil subgrade [J]. Transpoworld, 2021(30): 106–107. DOI: 10.16248/j.cnki.11-3723/u.2021.30.049.
    [6]
    徐建国, 陈志豪, 王壬. 埋地排水管道高聚物注浆修复受力特性分析 [J]. 岩土工程学报, 2021, 43(1): 121–129. DOI: 10.11779/CJGE202101014.

    XU J G, CHEN Z H, WANG R. Mechanical characteristics of buried drainage pipes repaired by polymer grouting technology [J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 121–129. DOI: 10.11779/CJGE202101014.
    [7]
    YATES B. Mechanics of cellular plastics [J]. Composites, 1982, 13(4): 362–363. DOI: 10.1016/0010-4361(82)90143-4.
    [8]
    王海福, 冯顺山. 爆炸载荷下聚氨酯泡沫材料中冲击波压力特性 [J]. 爆炸与冲击, 1999, 19(1): 78–83.

    WANG H F, FENG S S. Properties of shock pressure caused by explosion loads in polyurethane foam [J]. Explosion and Shock Waves, 1999, 19(1): 78–83.
    [9]
    徐全军, 唐丙文, 李裕春. 聚氨酯泡沫材料的隔爆作用 [J]. 解放军理工大学学报(自然科学版), 2007, 8(1): 77–81. DOI: 10.7666/j.issn.1009-3443.20070117.

    XU Q J, TANG B W, LI Y C. Polyurethane foam material’s gap effects [J]. Journal of PLA University of Science and Technology, 2007, 8(1): 77–81. DOI: 10.7666/j.issn.1009-3443.20070117.
    [10]
    LIU S C, ZHAO X H, FANG H Y, et al. Damage characteristics of polymer plates under the impact of the near-field and contact underwater explosion [J]. Advances in Materials Science and Engineering, 2021, 2021: 5957847. DOI: 10.1155/2021/5957847.
    [11]
    LIU Z D, ZHAO X H, FANG H Y, et al. Experimental study on the damage characteristics of polymer slabs subjected to air contact and close-in explosions [J]. Advances in Materials Science and Engineering, 2021, 2021: 2825062. DOI: 10.1155/2021/2825062.
    [12]
    张勇. 聚氨酯泡沫铝复合结构抗爆吸能试验及数值模拟分析 [J]. 爆炸与冲击, 2022, 42(4): 045101. DOI: 10.11883/bzycj-2021-0182.

    ZHANG Y. Testing and numerical simulation of the antiknock energy absorption of polyurethane foam aluminum composite structure [J]. Explosion and Shock Waves, 2022, 42(4): 045101. DOI: 10.11883/bzycj-2021-0182.
    [13]
    GARGANO A, DONOUGH M, DAS R, et al. Damage to fibre-polymer laminates caused by surface contact explosive charges [J]. Composites Part B: Engineering, 2020, 197: 108162. DOI: 10.1016/j.compositesb.2020.108162.
    [14]
    KELLY M, ARORA H, DEAR J P. The comparison of various foam polymer types in composite sandwich panels subjected to full scale air blast loading [J]. Procedia Engineering, 2014, 88: 48–53. DOI: 10.1016/j.proeng.2014.11.125.
    [15]
    曾祥, 刘彦, 许泽建, 等. 爆炸载荷作用下玻璃钢/硬质聚氨酯泡沫夹层结构抗冲击性能实验研究 [J]. 北京理工大学学报, 2021, 41(11): 1145–1153. DOI: 10.15918/j.tbit1001-0645.2021.036.

    ZENG X, LIU Y, XU Z J, et al. Experimental study on impact resistance of Glass Fiber Reinforced Plastic/Rigid Polyurethane Foam sandwich structures under air blast loading [J]. Transactions of Beijing Institute of Technology, 2021, 41(11): 1145–1153. DOI: 10.15918/j.tbit1001-0645.2021.036.
    [16]
    邹广平, 孙杭其, 唱忠良, 等. 聚氨酯/钢夹芯结构爆炸载荷下动力学响应的数值模拟 [J]. 爆炸与冲击, 2015, 35(6): 907–912. DOI: 10.11883/1001-1455(2015)06-0907-06.

    ZOU G P, SUN H Q, CHANG Z L, et al. Numerical simulation on dynamic response of polyurethane/steel sandwich structure under blast loading [J]. Explosion and Shock Waves, 2015, 35(6): 907–912. DOI: 10.11883/1001-1455(2015)06-0907-06.
    [17]
    LI M J, DU M R, WANG F M, et al. Study on the mechanical properties of polyurethane (PU) grouting material of different geometric sizes under uniaxial compression [J]. Construction and Building Materials, 2020, 259: 119797. DOI: 10.1016/j.conbuildmat.2020.119797.
    [18]
    刘志远. 高聚物注浆材料工程特性的试验研究 [D]. 郑州: 郑州大学, 2007: 22–30.
    [19]
    石明生. 高聚物注桨材料特性与堤坝定向劈裂注桨机理研究 [D]. 辽宁大连: 大连理工大学, 2011: 22–61.
    [20]
    王娟, 方宏远, 余自森, 等. 高聚物碎石混合料单轴受压性能试验研究 [J]. 建筑材料学报, 2019, 22(2): 320–326. DOI: 10.3969/j.issn.1007-9629.2019.02.024.

    WANG J, FANG H Y, YU Z S, et al. Experimental study on uniaxial compressive properties of polymer gravel mixtures [J]. Journal of Building Materials, 2019, 22(2): 320–326. DOI: 10.3969/j.issn.1007-9629.2019.02.024.
    [21]
    ZHAO X H, WANG G H, LU W B, et al. Damage features of RC slabs subjected to air and underwater contact explosions [J]. Ocean engineering, 2018, 147: 531–545. DOI: 10.1016/j.oceaneng.2017.11.007.
    [22]
    WANG Z Y, DU M R, FANG H Y, et al. Influence of different corrosion environments on mechanical properties of a roadbed rehabilitation polyurethane grouting material under uniaxial compression [J]. Construction and Building Materials, 2021, 301: 124092. DOI: 10.1016/J.CONBUILDMAT.2021.124092.
    [23]
    王高辉. 极端荷载作用下混凝土重力坝的动态响应行为和损伤机理[D]. 天津: 天津大学, 2014: 163–167.
    [24]
    廖真, 唐德高, 李治中, 等. 近地面空中爆炸马赫反射数值模拟研究 [J]. 振动与冲击, 2020, 39(5): 164–169,176. DOI: 10.13465/j.cnki.jvs.2020.05.022.

    LIAO Z, TANG D G, LI Z Z, et al. Numerical simulation for Mach reflection in air explosion near ground [J]. Journal of Vibration and Shock, 2020, 39(5): 164–169,176. DOI: 10.13465/j.cnki.jvs.2020.05.022.
    [25]
    吴红波, 邢化岛, 缪志军, 等. 乳化炸药聚能射流侵彻靶板的数值仿真 [J]. 工程爆破, 2016, 22(1): 68–72. DOI: 10.3969/j.issn.1006-7051.2016.01.015.

    WU H B, XING H D, MIAO Z J, et al. Numerical simulation of shaped charge jet penetrating on target by emulsion explosive [J]. Engineering Blasting, 2016, 22(1): 68–72. DOI: 10.3969/j.issn.1006-7051.2016.01.015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)  / Tables(3)

    Article Metrics

    Article views (639) PDF downloads(226) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return