Citation: | ZHANG Yunfeng, FANG Long, WEI Xin, XU Chang, SUI Yaguang, SHI Dongmei. Research on mechanism of shock fragmentation reaction of Zr-based bulk metallic glass fragment[J]. Explosion And Shock Waves, 2023, 43(1): 013103. doi: 10.11883/bzycj-2022-0187 |
[1] |
LUO P G, WANG Z C, JIANG C L, et al. Experimental study on impact-initiated characters of W/Zr energetic fragments [J]. Materials and Design, 2015, 84: 72–78. DOI: 10.1016/j.matdes.2015.06.107.
|
[2] |
WANG C T, HE Y, JI C, et al. Investigation on shock-induced reaction characteristics of a Zr-based metallic glass [J]. Intermetallics, 2018, 93: 383–388. DOI: 10.1016/j.intermet.2017.11.004.
|
[3] |
WEI H Y, YOO C S. Dynamic responses of reactive metallic structures under thermal and mechanical ignitions [J]. Journal of Materials Research, 2012, 27(21): 2705–2717. DOI: 10.1557/jmr.2012.302.
|
[4] |
WEI H Y, YOO C S. Dynamic structural and chemical responses of energetic solids [J]. MRS Online Proceedings Library (OPL), 2012, 1405: 62–71. DOI: 10.1557/opl.2012.59.
|
[5] |
JI C, HE Y, WANG C T, et al. Effect of dynamic fragmentation on the reaction characteristics of a Zr-based metallic glass [J]. Journal of Non-Crystalline Solids, 2019, 515: 149–156. DOI: 10.1016/j.jnoncrysol.2019.04.022.
|
[6] |
GRADY D E. Fragment size distributions from the dynamic fragmentation of brittle solids [J]. International Journal of Impact Engineering, 2008, 35(12): 1557–1562. DOI: 10.1016/j.ijimpeng.2008.07.042.
|
[7] |
GRADY D E. Length scales and size distributions in dynamic fragmentation [J]. International Journal of Fracture, 2010, 163(1/2): 85–99. DOI: 10.1007/s10704-009-9418-4.
|
[8] |
ZHANG X F, SHI A S, QIAO L, et al. Experimental study on impact-initiated characters of multifunctional energetic structural materials [J]. Journal of Applied Physics, 2013, 113(8): 083508. DOI: 10.1063/1.4793281.
|
[9] |
谭华. 实验冲击波物理导引 [M]. 北京: 国防工业出版社, 2007: 4–87.
TAN H. Introduction to experimental shock-wave physics [M]. Beijing: National Defense Industry Press, 2007: 4–87.
|
[10] |
ZHANG X F, SHI A S, ZHANG J, et al. Thermochemical modeling of temperature controlled shock-induced chemical reactions in multifunctional energetic structural materials under shock compression [J]. Journal of Applied Physics, 2012, 111(12): 123501. DOI: 10.1063/1.4729048.
|
[11] |
张云峰. Zr基非晶合金破片特性及毁伤机理研究 [D]. 石家庄: 陆军工程大学, 2020: 29–84.
|
[12] |
MOHAN S, TRUNOV M A, DREIZIN E L. Heating and ignition of metal particles in the transition heat transfer regime [J]. Journal of Heat Transfer, 2008, 130(10): 104505. DOI: 10.1115/1.2945881.
|
[13] |
PHUOC T X, CHEN R H. Modeling the effect of particle size on the activation energy and ignition temperature of metallic nanoparticles [J]. Combustion and Flame, 2012, 159(1): 416–419. DOI: 10.1016/j.combustflame.2011.07.003.
|
[14] |
MOHAN S, TRUNOV M A, DREIZIN E L. On possibility of vapor-phase combustion for fine aluminum particles [J]. Combustion and Flame, 2009, 156(11): 2213–2216. DOI: 10.1016/j.combustflame.2009.08.007.
|
[15] |
HUANG Y, RISHA G A, YANG V, et al. Effect of particle size on combustion of aluminum particle dust in air [J]. Combustion and Flame, 2009, 156(1): 5–13. DOI: 10.1016/j.combustflame.2008.07.018.
|
[16] |
张云峰, 罗兴柏, 李晨, 等. 锆、铝颗粒活化能尺寸效应的理论模型 [J]. 稀有金属材料与工程, 2020, 49(12): 4097–4102.
ZHANG Y F, LUO X B, LI C, et al. Analytical model for size effect of activation energy of zirconium and aluminum particles [J]. Rare Metal Materials and Engineering, 2020, 49(12): 4097–4102.
|
[17] |
MAGLIA F, ANSELMI-TAMBURINI U, GENNARI S, et al. Dynamic behaviour and chemical mechanism in the self-propagating high-temperature reaction between Zr powders and oxygen gas [J]. Physical Chemistry Chemical Physics, 2001, 3(3): 489–496. DOI: 10.1039/B005678M.
|