Volume 43 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
LI Guoqiang, MA Gang, GAO Songtao, GUO Dongcai, ZHANG Jiayin. Numerical study on dynamic response and spall damage of filter concrete under impact load[J]. Explosion And Shock Waves, 2023, 43(2): 023201. doi: 10.11883/bzycj-2022-0189
Citation: LI Guoqiang, MA Gang, GAO Songtao, GUO Dongcai, ZHANG Jiayin. Numerical study on dynamic response and spall damage of filter concrete under impact load[J]. Explosion And Shock Waves, 2023, 43(2): 023201. doi: 10.11883/bzycj-2022-0189

Numerical study on dynamic response and spall damage of filter concrete under impact load

doi: 10.11883/bzycj-2022-0189
  • Received Date: 2022-05-05
  • Rev Recd Date: 2022-08-14
  • Available Online: 2022-09-13
  • Publish Date: 2023-02-25
  • Based on the working mechanism of local resonance materials, a filter concrete with stress wave attenuation characteristics is designed by embedding metal balls wrapped with elastic layer (filter units) in the concrete matrix. First, the stress wave attenuation mechanism of filter concrete is analyzed by simplifying the filter concrete structure into a mass-spring mechanical system. Then, the propagation velocity and peak stress of stress wave in normal concrete model and filter concrete model under impact load are compared by using numerical simulation approach. Through parameter analysis, the influence of the density of metal ball, elastic modulus and thickness of elastic layer on the energy storage of filter units are studied. Finally, the spalling damage patterns of normal concrete model and filter concrete model under impact load are compared. The results show that the filter units can effectively reduce the stress wave propagation velocity and magnitude of peak stress in the concrete matrix. The vibration of the metal balls and the deformation of the elastic layer form a good energy storage mechanism for filter units and effectively reduce the energy exerted by the impact load on the concrete matrix. The larger the mass of the metal balls, the better the energy storage effect of the filter units, while the elastic modulus and thickness of the elastic layer need to be designed through a proper analysis to maximize the energy storage of the filter units. The concrete matrix around the elastic layer has obvious stress concentration and local damage may occur, but the local damage of the filter concrete matrix dissipates a large amount of energy produced by the load, effectively reducing the degree of destruction near the free surface of the structure. Combined with the attenuation effect of the filter units on the stress wave, the filter concrete has achieved good impact resistance.
  • loading
  • [1]
    WU J, ZHOU Y, ZHANG R, et al. Numerical simulation of reinforced concrete slab subjected to blast loading and the structural damage assessment [J]. Engineering Failure Analysis, 2020, 118: 104926. DOI: 10.1016/j.engfailanal.2020.104926.
    [2]
    汪维. 钢筋混凝土构件在爆炸载荷作用下的毁伤效应及评估方法研究 [D]. 长沙: 国防科学技术大学, 2012.

    WANG W. Study on damage effects and assessments method of reinforced concrete structural members under blast loading [D]. Changsha, Hunan, China: National University of Defense Technology, 2012.
    [3]
    CHEN G, HAO Y F, HAO H. 3D meso-scale modelling of concrete material in spall tests [J]. Materials and Structures, 2015, 48(6): 1887–1899. DOI: 10.1617/s11527-014-0281-z.
    [4]
    郭弦. 冲击作用下混凝土中应力波传播规律研究 [D]. 长沙: 国防科学技术大学, 2010.

    GUO X. Stress wave propagation in concrete structure under impact loading [D]. Changsha, Hunan, China: National University of Defense Technology, 2010.
    [5]
    巫绪涛, 廖礼. 脆性材料中应力波衰减规律与层裂实验设计的数值模拟 [J]. 爆炸与冲击, 2017, 37(4): 705–711. DOI: 10.11883/1001-1455(2017)04-0705-07.

    WU X T, LIAO L. Numerical simulation of stress wave attenuation in brittle material and spalling experiment design [J]. Explosion and Shock Waves, 2017, 37(4): 705–711. DOI: 10.11883/1001-1455(2017)04-0705-07.
    [6]
    俞鑫炉, 付应乾, 董新龙, 等. 混凝土一维应力层裂实验的全场DIC分析 [J]. 力学学报, 2019, 51(4): 1064–1072. DOI: 10.6052/0459-1879-19-008.

    YU X L, FU Y Q, DONG X L, et al. Full field DIC analysis of one-dimensional spall strength for concrete [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1064–1072. DOI: 10.6052/0459-1879-19-008.
    [7]
    LIU Z Y, ZHANG X X, MAO Y W, et al. Locally resonant sonic materials [J]. Science, 2000, 289(5485): 1734–1736. DOI: 10.1126/science.289.5485.1734.
    [8]
    LIU Z Y, CHAN C T, SHENG P. Analytic model of phononic crystals with local resonances [J]. Physical Review B, 2005, 71(1): 014103. DOI: 10.1103/PhysRevB.71.014103.
    [9]
    MITCHELL S J, PANDOLFI A, ORTIZ M. Metaconcrete: designed aggregates to enhance dynamic performance [J]. Journal of the Mechanics and Physics of Solids, 2014, 65: 69–81. DOI: 10.1016/j.jmps.2014.01.003.
    [10]
    MITCHELL S J, PANDOLFI A, ORTIZ M. Investigation of elastic wave transmission in a metaconcrete slab [J]. Mechanics of Materials, 2015, 91: 295–303. DOI: 10.1016/j.mechmat.2015.08.004.
    [11]
    张恩, 路国运, 杨会伟, 等. 超材料混凝土的带隙特征及对冲击波的衰减效应 [J]. 爆炸与冲击, 2020, 40(6): 063301. DOI: 10.11883/bzycj-2019-0252.

    ZHANG E, LU G Y, YANG H W, et al. Band gap features of metaconcrete and shock wave attenuation in it [J]. Explosion and Shock Waves, 2020, 40(6): 063301. DOI: 10.11883/bzycj-2019-0252.
    [12]
    JIN H X, HAO H, HAO Y F, et al. Predicting the response of locally resonant concrete structure under blast load [J]. Construction and Building Materials, 2020, 252: 118920. DOI: 10.1016/j.conbuildmat.2020.118920.
    [13]
    XU C, CHEN W, HAO H, et al. Static mechanical properties and stress wave attenuation of metaconcrete subjected to impulsive loading [J]. Engineering Structures, 2022, 263: 114382. DOI: 10.1016/j.engstruct.2022.114382.
    [14]
    OYELADE A, ABIODUN Y, SADIQ M O. Dynamic behaviour of concrete containing aggregate resonant frequency [J]. Journal of Computational Applied Mechanics, 2018, 49(2): 380–385. DOI: 10.22059/JCAMECH.2018.269048.339.
    [15]
    HUANG H H, SUN C T, HUANG G L. On the negative effective mass density in acoustic metamaterials [J]. International Journal of Engineering Science, 2009, 47(4): 610–617. DOI: 10.1016/j.ijengsci.2008.12.007.
    [16]
    LIU Z Y, CHAN C T, SHENG P. Three-component elastic wave band-gap material [J]. Physical Review B, 2002, 65(16): 165116. DOI: 10.1103/PhysRevB.65.165116.
    [17]
    吴健, 白晓春, 肖勇, 等. 一种多频局域共振型声子晶体板的低频带隙与减振特性 [J]. 物理学报, 2016, 65(6): 064602. DOI: 10.7498/aps.65.064602.

    WU J, BAI X C, XIAO Y, et al. Low frequency band gaps and vibration reduction properties of a multi-frequency locally resonant phononic plate [J]. Acta Physica Sinica, 2016, 65(6): 064602. DOI: 10.7498/aps.65.064602.
    [18]
    EURO C. CEB-FIP model code 1990 [Z]. Lausanne, Switzerland: Thomas TelFord Sevices Ltd., 1993. DOI: 10.1680/ceb-fipmc1990.35430.
    [19]
    MALVAR L J, CRAWFORD J E. Dynamic increase factors for concrete [R]. Port Hueneme CA: Naval Facilities Engineering Service Center, 1998.
    [20]
    LI J, HAO H. Numerical study of concrete spall damage to blast loads [J]. International Journal of Impact Engineering, 2014, 68: 41–55. DOI: 10.1016/j.ijimpeng.2014.02.001.
    [21]
    WU H J, ZHANG Q M, HUANG F L, et al. Experimental and numerical investigation on the dynamic tensile strength of concrete [J]. International Journal of Impact Engineering, 2005, 32(1): 605–617. DOI: 10.1016/j.ijimpeng.2005.05.008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(28)  / Tables(3)

    Article Metrics

    Article views (519) PDF downloads(189) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return