Citation: | LUO Haoshun, NIU Huanhuan, WANG Mufei, CHEN Jiajun, LI Zhiqiang. Impact response of transparent ceramic sandwich structures and its prediction by BP neural network[J]. Explosion And Shock Waves, 2023, 43(10): 103103. doi: 10.11883/bzycj-2022-0199 |
[1] |
RAMISETTY M, SASTRI S, KASHALIKAR U, et al. Transparent polycrystalline cubic spinels protect and defend [J]. American Ceramic Society Bulletin, 2013, 92(2): 20–25. DOI: 10.1007/s10971-012-2957-6.
|
[2] |
MALLIK A, BASUMAJUMDAR A, KUNDU P, et al. Some studies on nucleation, crystallization, microstructure and mechanical properties of mica glass-ceramics in the system 0.2BaO·0.8K2O·4MgO·Al2O3·6SiO2·2MgF2 [J]. Ceramics International, 2013, 39(3): 2551–2559. DOI: 10.1016/j.ceramint.2012.09.015.
|
[3] |
王笛. 汽车风挡玻璃冲击破坏现象高精度仿真方法开发及应用研究[D]. 广州: 华南理工大学, 2020.
WANG D. Development of high-precison numerical algorithms for the impact fracture analysis of automotive windshield glass and the related engineering applications [D]. Guangzhou, Guangdong, China: South China University of Technology, 2020.
|
[4] |
CHEN S W, CHEN X, WU X Q. The mechanical behaviour of polyvinyl butyral at intermediate strain rates and different temperatures [J]. Construction and Building Materials, 2018, 182: 66–79. DOI: 10.1016/j.conbuildmat.2018.06.080.
|
[5] |
GALUPPI L, ROYER-CARFAGNI G F. Effective thickness of laminated glass beams: new expression via a variational approach [J]. Engineering Structures, 2012, 38: 53–67. DOI: 10.1016/j.engstruct.2011.12.039.
|
[6] |
尹怡林. 夹层复合建筑玻璃抗低速冲击性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. DOI: 10.27061/d.cnki.ghgdu.2020.006729.
YIN Y L. Study on low-speed impact property of laminated glass for construction [D]. Harbin, Heilongjiang, China: Harbin Institute of Technology, 2020. DOI: 10.27061/d.cnki.ghgdu.2020.006729.
|
[7] |
DENG G X, MA W, PENG Y, et al. Experimental study on laminated glass responses of high-speed trains subject to windblown sand particles loading [J]. Construction and Building Materials, 2021, 300: 124332. DOI: 10.1016/j.conbuildmat.2021.124332.
|
[8] |
ZHANG X H, HAO H, WANG Z Q. Experimental study of laminated glass window responses under impulsive and blast loading [J]. International Journal of Impact Engineering, 2015, 78: 1–19. DOI: 10.1016/j.ijimpeng.2014.11.020.
|
[9] |
ZHANG X H, HAO H. Experimental and numerical study of boundary and anchorage effect on laminated glass windows under blast loading [J]. Engineering Structures, 2015, 90: 96–116. DOI: 10.1016/j.engstruct.2015.02.022.
|
[10] |
STRABBURGER E. Ballistic testing of transparent armour ceramics [J]. Journal of the European Ceramic Society, 2009, 29(2): 267–273. DOI: 10.1016/j.jeurceramsoc.2008.03.049.
|
[11] |
GIOVANNA R, ZULLI F, ANDREOZZI L, et al. Test methods for the determination of interlayer properties in laminated glass [J]. Journal of Materials in Civil Engineering, 2017, 29(4): 04016268. DOI: 10.1061/(ASCE)MT.1943-5533.0001802.
|
[12] |
STEINBERGER D, SANDFELD S. Machine learning-based classification of dislocation microstructures [J]. Frontiers in Materials, 2019, 6: 10. DOI: 10.3389/fmats.2019.00141.
|
[13] |
BREIMAN L. Random Forests [J]. Machine Learning, 2001, 45(1): 5–32. DOI: 10.1023/A:1010933404324.
|
[14] |
JAIN A K, MAO J, MOHIUDDIN K M. Artificial neural networks: a tutorial [J]. Computer, 1996, 29(3): 31–44. DOI: 10.1109/2.485891.
|
[15] |
BASHEER I A, HAJMEER M. Artificial neural networks: fundamentals, computing, design, and application [J]. Journal of Microbiological Methods, 2000, 43(1): 3–31. DOI: 10.1016/S0167-7012(00)00201-3.
|
[16] |
GUO K, YANG Z, YU C H, et al. Artificial intelligence and machine learning in design of mechanical materials [J]. Materials Horizons, 2021, 8(4): 1153–1172. DOI: 10.1039/D0MH01451F.
|
[17] |
XU Y J, YOU T, DU C J. An integrated micromechanical model and BP neural network for predicting elastic modulus of 3-D multi-phase and multi-layer braided composite [J]. Composite Structures, 2015, 122: 308–315. DOI: 10.1016/j.compstruct.2014.11.052.
|
[18] |
MAURO J C, TANDIA A, VARGHEESE K D, et al. Accelerating the design of functional glasses through modeling [J]. Chemistry of Materials , 2016, 28(12): 4267–4277. DOI: 10.1021/acs.chemmater.6b01054.
|
[19] |
刘源, 庞宝君. 基于贝叶斯正则化BP神经网络的铝平板超高速撞击损伤模式识别 [J]. 振动与冲击, 2016, 35(12): 22-27. DOI: 10.13465/j.cnki.jvs.2016.12.004.
LIU Y, PANG B J. Hypervelocity impact damage pattern recognition on aluminum plates based on bayesian regularization BP neural network [J]. Journal of Vibration and Shock, 2016, 35(12): 22–27. DOI: 10.13465/j.cnki.jvs.2016.12.004.
|
[20] |
孟嫣然, 王星尔, 杨健, 等. 基于机器学习算法的夹层玻璃冲击破坏预测模型研究 [J]. 无机材料学报, 2021, 36(1): 61–68. DOI: 10.15541/jim20200187.
MENG Y R, WANG X E, YANG J, et al. Research on machine learning based model for predicting the impact status of laminated glass [J]. Journal of Inorganic Materials, 2021, 36(1): 61–68. DOI: 10.15541/jim20200187.
|
[21] |
CHEN J, XU J, YAO X, et al. Experimental investigation on the radial and circular crack propagation of PVB laminated glass subject to dynamic out-of-plane loading [J]. Engineering Fracture Mechanics, 2013, 112/113: 26–40. DOI: 10.1016/j.engfracmech.2013.09.010.
|
[22] |
COBLE R L. Transparent alumina and method of preparation: US 3026210-A [P]. 1962-03-20.
|
[23] |
MORGAN W L. Manufacture and characteristics of laminated glass [J]. Industrial and Engineering Chemistry, 1931, 23(5): 505–508. DOI: 10.1021/ie50257a008.
|
[24] |
杨震琦, 庞宝君, 王立闻, 等. JH-2模型及其在Al2O3陶瓷低速撞击数值模拟中的应用 [J]. 爆炸与冲击, 2010, 30(5): 463–471. DOI: 10.11883/1001-1455(2010)05-0463-09.
YANG Z Q, PANG B J, WANG L W, et al. JH-2 model and its application to numerical simulation on Al2O3 ceramic under low-velocity impact [J]. Explosion and Shock Waves, 2010, 30(5): 463–471. DOI: 10.11883/1001-1455(2010)05-0463-09.
|
[25] |
VOGL T P, MANGIS J K, RIGLER A K, et al. Accelerating the convergence of the back-propagation method [J]. Biological Cybernetics, 1988, 59(4/5): 257–263. DOI: 10.1007/BF00332914.
|
[1] | CHEN Ziwei, WANG Zhongqi, ZENG Linghui. A method for predicting peak pressure in an explosion shock tube based on BP neural network[J]. Explosion And Shock Waves, 2024, 44(5): 054101. doi: 10.11883/bzycj-2023-0187 |
[2] | LI Qinchao, YAO Chengbao, CHENG Shuai, ZHANG Dezhi, LIU Wenxiang. Application of the neural network equation of state in numerical simulation of intense blast wave[J]. Explosion And Shock Waves, 2023, 43(4): 044202. doi: 10.11883/bzycj-2022-0222 |
[3] | XIAO Youcai, WANG Ruisheng, FAN Chenyang, ZHANG Hong, WANG Zhijun, SUN Yi. Cook-off experiment on the JH-14C booster explosive with a shell and the relevant numerical simulation[J]. Explosion And Shock Waves, 2023, 43(7): 072301. doi: 10.11883/bzycj-2022-0555 |
[4] | WANG Qinghua, GUO Weiguo, XU Feng, GAO Meng, WANG Zhihao. Synchronous and decoupling calibration of tri-axial impact force transducers based on a Hopkinson bar and an artificial neural network[J]. Explosion And Shock Waves, 2022, 42(10): 104101. doi: 10.11883/bzycj-2022-0015 |
[5] | DONG Kai, REN Huiqi, RUAN Wenjun, HUANG Kui, BU Pengfei. Dynamic constitutive model of coral sand under blast loading[J]. Explosion And Shock Waves, 2021, 41(4): 043101. doi: 10.11883/bzycj-2020-0172 |
[6] | ZHANG Yunfeng, LUO Xingbai, LIU Guoqing, SHI Dongmei. Construction and application of the JH-2 model for a Zr-based bulk metallic glass alloy[J]. Explosion And Shock Waves, 2020, 40(7): 073101. doi: 10.11883/bzycj-2019-0377 |
[7] | LI Mingxing, WANG Xianhui, ZHOU Yunbo, SUN Xiaowang, ZENG Bin, HU Wenhai. Research on optimization of vehicle anti-shock protection components based on neural network[J]. Explosion And Shock Waves, 2020, 40(2): 024203. doi: 10.11883/bzycj-2019-0055 |
[8] | SHI Yongxiang, SHI Dongmei, LI Wenzhao, YU Zhitong, SHANG Chunming. Study on JH-2 model of the ZrCuNiAlAg bulk amorphous alloy[J]. Explosion And Shock Waves, 2019, 39(9): 093104. doi: 10.11883/bzycj-2018-0221 |
[9] | Shi Jianjun, Li Qingya, Zhang Qi, Wei Xing, Wang Hui. Forecast system for blasting vibration velocity peak based on Matlab and BP neural network[J]. Explosion And Shock Waves, 2017, 37(6): 1087-1092. doi: 10.11883/1001-1455(2017)06-1087-06 |
[10] | Ren Peng, Zhang Wei, Liu Jianhua. Experimental research on shock resistant properties of aluminum alloylattice core sandwich panels under underwater shock loading[J]. Explosion And Shock Waves, 2016, 36(1): 101-106. doi: 10.11883/1001-1455(2016)01-0101-06 |
[11] | Zhang Long-hui, Zhang Xiao-qing, Yao Xiao-hu, Zang Shu-guang. Constitutive model of transparent aviation polyurethane at high strain rates[J]. Explosion And Shock Waves, 2015, 35(1): 51-56. doi: 10.11883/1001-1455(2015)01-0051-06 |
[12] | Hou Xiu-cheng, Jiang Jian-wei, Chen Zhi-gang. Numerical simulation on structure modules of effective jet[J]. Explosion And Shock Waves, 2014, 34(1): 35-40. doi: 10.11883/1001-1455(2014)01-0035-06 |
[13] | YANG Zhen-qi, PANG Bao-jun, WANG Li-wen, CHI Run-qiang. JH-2modelanditsapplicationtonumericalsimulationonAl2O3ceramic underlow-velocityimpact[J]. Explosion And Shock Waves, 2010, 30(5): 463-471. doi: 10.11883/1001-1455(2010)05-0463-09 |
[14] | DUAN Bao-fu, ZHANG Meng, LI Jun-meng. ABPneuralnetworkmodelforforecastingofvibrationparameters fromhole-by-holedetonation[J]. Explosion And Shock Waves, 2010, 30(4): 401-406. doi: 10.11883/1001-1455(2010)04-0401-06 |
[15] | SHI Xiu-zhi, LIN Da-neng, CHEN Shou-ru. Blasting-vibration-induced damage prediction by rough set-based fuzzy-neural network[J]. Explosion And Shock Waves, 2009, 29(4): 401-407. doi: 10.11883/1001-1455(2009)04-0401-07 |
1. | 张克斌,李文彬,郑宇,姚文进,赵昌方,洪豆. 快速烤燃条件下B炸药战斗部的临界泄压面积. 爆炸与冲击. 2023(05): 36-45 . ![]() | |
2. | 杨天昊,种涛,李涛,傅华,胡海波. 非冲击点火反应驱动的吉帕级缓前沿斜波加载技术. 爆炸与冲击. 2023(06): 152-159 . ![]() | |
3. | 姚奎光,王淑娟,樊星,聂少云,王翔,代晓淦. 不同机械约束下压装PBX炸药反应演化行为. 兵工学报. 2022(08): 1772-1778 . ![]() |