Citation: | ZHENG Chun, HE Yong, ZHANG Huanhao, CHEN Zhihua. On the evolution mechanism of the shock-accelerated annular SF6 cylinder[J]. Explosion And Shock Waves, 2023, 43(1): 013201. doi: 10.11883/bzycj-2022-0226 |
[1] |
LINDL J D, MCCRORY R L, CAMPBELL E M. Progress toward ignition and burn propagation in inertial confinement fusion [J]. Physics Today, 1992, 45(9): 32–40. DOI: 10.1063/1.881318.
|
[2] |
YANG J, KUBOTA T, ZUKOSKI E E. Applications of shock-induced mixing to supersonic combustion [J]. AIAA Journal, 1993, 31(5): 854–862. DOI: 10.2514/3.11696.
|
[3] |
BALAKRISHNAN K, MENON S. Characterization of the mixing layer resulting from the detonation of heterogeneous explosive charges [J]. Flow Turbulence and Combustion, 2011, 87(4): 639–671. DOI: 10.1007/s10494-011-9349-9.
|
[4] |
罗喜胜, 翟志刚, 司廷, 等. 激波诱导下的气体界面不稳定性实验研究 [J]. 力学进展, 2014, 44(1): 201407. DOI: 10.6052/1000-0992-14-028.
LUO X S, ZHAI Z G, SI T, et al. Experimental study on the interfacial instability induced by shock waves [J]. Advances in Mechanics, 2014, 44(1): 201407. DOI: 10.6052/1000-0992-14-028.
|
[5] |
ZOU L Y, LIU C L, TAN D W, et al. On interaction of shock wave with elliptic gas cylinder [J]. Journal of Visualization, 2010, 13(4): 347–353. DOI: 10.1007/s12650-010-0053-y.
|
[6] |
黄熙龙, 廖深飞, 邹立勇, 等. 激波与椭圆形重气柱相互作用的PLIF实验 [J]. 爆炸与冲击, 2017, 37(5): 829–836. DOI: 10.11883/1001-1455(2017)05-0829-08.
HUANG X L, LIAO S F, ZOU L Y, et al. Experiment on interaction of shock and elliptic heavy-gas cylinder by using PLIF [J]. Explosion and Shock Waves, 2017, 37(5): 829–836. DOI: 10.11883/1001-1455(2017)05-0829-08.
|
[7] |
ZHAI Z G, WANG M H, SI T, et al. On the interaction of a planar shock with a light polygonal interface [J]. Journal of Fluid Mechanics, 2014, 757: 800–816. DOI: 10.1017/jfm.2014.516.
|
[8] |
LUO X S, WANG M H, SI T, et al. On the interaction of a planar shock with an SF6 polygon [J]. Journal of Fluid Mechanics, 2015, 773: 366–394. DOI: 10.1017/jfm.2015.257.
|
[9] |
沙莎, 陈志华, 薛大文, 等. 激波与SF6梯形气柱相互作用的数值模拟 [J]. 物理学报, 2014, 63(8): 085205. DOI: 10.7498/aps.63.085205.
SHA S, CHEN Z H, XUE D W, et al. Richtmyer-Meshkov instability induced by the interaction between shock wave and SF6 isosceles trapezoid cylinders [J]. Acta Physica Sinica, 2014, 63(8): 085205. DOI: 10.7498/aps.63.085205.
|
[10] |
廖深飞, 邹立勇, 刘金宏, 等. 反射激波作用重气柱的Richtmyer-Meshkov不稳定性的实验研究 [J]. 爆炸与冲击, 2016, 36(1): 87–92. DOI: 10.11883/1001-1455(2016)01-0087-06.
LIAO S F, ZOU L Y, LIU J H, et al. Experimental study of Richtmyer-Meshkov instability in a heavy gas cylinder interacting with reflected shock wave [J]. Explosion and Shock Waves, 2016, 36(1): 87–92. DOI: 10.11883/1001-1455(2016)01-0087-06.
|
[11] |
王震, 王涛, 柏劲松, 等. 流场非均匀性对非平面激波诱导的Richtmyer-Meshkov不稳定性影响的数值研究 [J]. 爆炸与冲击, 2019, 39(4): 041407. DOI: 10.11883/bzycj-2018-0342.
WANG Z, WANG T, BAI J S, et al. Numerical study of non-uniformity effect on Richtmyer-Meshkov instability induced by non-planar shock wave [J]. Explosion and Shock Waves, 2019, 39(4): 041407. DOI: 10.11883/bzycj-2018-0342.
|
[12] |
ORLICZ G C, BALASUBRAMANIAN S, PRESTRIDGE K P. Incident shock Mach number effects on Richtmyer-Meshkov mixing in a heavy gas layer [J]. Physics of Fluids, 2013, 25(11): 114101. DOI: 10.1063/1.4827435.
|
[13] |
SHANKAR S K, LELE S K. Numerical investigation of turbulence in reshocked Richtmyer-Meshkov unstable curtain of dense gas [J]. Shock Waves, 2014, 24(1): 79–95. DOI: 10.1007/s00193-013-0478-z.
|
[14] |
ZENG W G, PAN J H, SUN Y T, et al. Turbulent mixing and energy transfer of reshocked heavy gas curtain [J]. Physics of Fluids, 2018, 30(6): 064106. DOI: 10.1063/1.5032275.
|
[15] |
DE FRAHAN M T H, MOVAHED P, JOHNSEN E. Numerical simulations of a shock interacting with successive interfaces using the discontinuous Galerkin method: the multilayered Richtmyer-Meshkov and Rayleigh-Taylor instabilities [J]. Shock Waves, 2015, 25(4): 329–345. DOI: 10.1007/s00193-014-0539-y.
|
[16] |
LIANG Y, LIU L L, ZHAI Z G, et al. Evolution of shock-accelerated heavy gas layer [J]. Journal of Fluid Mechanics, 2020, 886: A7. DOI: 10.1017/jfm.2019.1052.
|
[17] |
WANG G, WANG Y N, LI D D, et al. Numerical study on shock-accelerated gas rings [J]. Physics of Fluids, 2020, 32(2): 026102. DOI: 10.1063/1.5135762.
|
[18] |
SAMTANEY R, ZABUSKY N J. Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: models and scaling laws [J]. Journal of Fluid Mechanics, 1994, 269: 45–78. DOI: 10.1017/s0022112094001485.
|
[19] |
YANG J, KUBOTA T, ZUKOSKI E E. A model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity [J]. Journal of Fluid Mechanics, 1994, 258: 217–244. DOI: 10.1017/s0022112094003307.
|
[20] |
冯莉莉, 翟志刚, 司廷, 等. 激波诱导双层气柱演化的偏心效应研究 [J]. 气体物理, 2022, 7(2): 13–25. DOI: 10.19527/j.cnki.2096-1642.0959.
FENG L L, ZHAI Z G, SI T, et al. Eccentric effect on evolution of shock-accelerated double-layer gas cylinder [J]. Physics of Gases, 2022, 7(2): 13–25. DOI: 10.19527/j.cnki.2096-1642.0959.
|
[21] |
FENG L L, XU J R, ZHAI Z G, et al. Evolution of shock-accelerated double-layer gas cylinder [J]. Physics of Fluids, 2021, 33(8): 086105. DOI: 10.1063/5.0062459.
|
[22] |
LOMBARDINI M, HILL D J, PULLIN D I, et al. Atwood ratio dependence of Richtmyer-Meshkov flows under reshock conditions using large-eddy simulations [J]. Journal of Fluid Mechanics, 2011, 670: 439–480. DOI: 10.1017/s0022112010005367.
|
[23] |
WANG X S, YANG D G, WU J Q, et al. Interaction of a weak shock wave with a discontinuous heavy-gas cylinder [J]. Physics of Fluids, 2015, 27(6): 064104. DOI: 10.1063/1.4922613.
|
[24] |
NIEDERHAUS J H J, GREENOUGH J A, OAKLEY J G, et al. A computational parameter study for the three-dimensional shock-bubble interaction [J]. Journal of Fluid Mechanics, 2008, 594: 85–124. DOI: 10.1017/s0022112007008749.
|
[25] |
ZHENG C, ZHANG H H, CHEN Z H, et al. Interaction of cylindrical converging shocks with an equilateral triangular SF6 cylinder [J]. Physics of Fluids, 2019, 31(8): 086104. DOI: 10.1063/1.5094671.
|