Citation: | ZHANG Kebin, LI Wenbin, ZHENG Yu, YAO Wenjin, ZHAO Changfang, HONG Dou. Critical vent area of a Comp-B warhead under fast cook-off[J]. Explosion And Shock Waves, 2023, 43(5): 052301. doi: 10.11883/bzycj-2022-0234 |
[1] |
许蕾, 张鹏. 国内外钝感弹药评估标准的发展与分析 [J]. 航天标准化, 2010(4): 35–37. DOI: 10.19314/j.cnki.1009-234x.2010.04.009.
XU L, ZHANG P. Development and analysis of evaluation criteria for insensitive munitions at home and abroad [J]. Aerospace Standardization, 2010(4): 35–37. DOI: 10.19314/j.cnki.1009-234x.2010.04.009.
|
[2] |
黄亨建, 路中华, 刘晓波等. 欧美钝感弹药技术发展现状与趋势 [J]. 含能材料, 2017, 25(8): 618–621. DOI: 10.11943/j.issn.1006-9941.2017.08.00X.
HUANG H J, LU Z H, LIU X B, et al. Development status and trend of insensitive ammunition technology in Europe and America [J]. Energetic Materials, 2017, 25(8): 618–621. DOI: 10.11943/j.issn.1006-9941.2017.08.00X.
|
[3] |
马晗晔, 王雨时, 王光宇. 国外不敏感炸药综述 [J]. 兵器装备工程学报, 2020, 41(5): 166–174. DOI: 10.11809/bqzbgcxb2020.05.032.
MA H Y, WANG Y S, WANG G Y. Review of insensitive explosives abroad [J]. Journal of Ordnance Equipment Engineering, 2020, 41(5): 166–174. DOI: 10.11809/bqzbgcxb2020.05.032.
|
[4] |
梁斌, 钱立新, 牛公杰. 常规弹药热缓解技术研究初步分析 [C]//2014(第六届)含能材料与钝感弹药技术学术研讨会. 成都, 2014: 218–223.
LIANG B, QIAN L X, NIU G J. Preliminary analysis on thermal mitigation technology of conventional ammunition [C]// Proceedings of the Symposium on Energetic Materials and Insensitive Ammunition Technology. Chengdu, Sichuan, China, 2014: 218–223.
|
[5] |
沈飞, 王胜强, 王辉. HMX基含铝炸药装药慢烤缓释结构设计及验证 [J]. 含能材料, 2019, 27(10): 861–866. DOI: 10.11943/CJEM2018273.
SHEN F, WANG S Q, WANG H. Design and verification of slow-baking and sustained-release structure of HMX-based aluminum-containing explosive charge [J]. Energetic Materials, 2019, 27(10): 861–866. DOI: 10.11943/CJEM2018273.
|
[6] |
沈飞, 王胜强, 王辉. 不同约束条件下HMX基含铝炸药的慢烤响应特性 [J]. 火炸药学报, 2019, 42(4): 385–390. DOI: 10.14077/j.issn.1007-7812.2019.04.012.
SHEN F, WANG S Q, WANG H. Slow-baking response characteristics of HMX-based aluminum-containing explosives under different constraints [J]. Chinese Journal of Explosives and Propellants, 2019, 42(4): 385–390. DOI: 10.14077/j.issn.1007-7812.2019.04.012.
|
[7] |
闫丽, 王雨时, 闻泉, 等. 国外钝感弹药技术新进展 [J]. 飞航导弹, 2017(8): 9–51. DOI: 10.16338/j.issn.1009-1319.2017.08.09.
YAN L, WANG Y S, WEN Q, et al. New progress of foreign insensitive ammunition technology [J]. Airborne Missile, 2017(8): 9–51. DOI: 10.16338/j.issn.1009-1319.2017.08.09.
|
[8] |
徐瑞, 智小琦, 于永利, 等. 热刺激下不同结构引信的响应机理 [J]. 高压物理学报, 2021, 35(5): 127–137. DOI: 10.11858/gywlxb.20210720.
XU R, ZHI X Q, YU Y L, et al. Response mechanism of fuzes with different structures under thermal stimulation [J]. Chinese Journal of High Voltage Physics, 2021, 35(5): 127–137. DOI: 10.11858/gywlxb.20210720.
|
[9] |
陈朗, 李贝贝, 马欣. DNAN炸药烤燃特征 [J]. 含能材料, 2016, 24(1): 6. DOI: 10.11943/j.issn.1006-9941.2016.01.004.
CHEN L, LI B B, MA X. Cook-off characteristics of DNAN explosives [J]. Energetic Materials, 2016, 24(1): 6. DOI: 10.11943/j.issn.1006-9941.2016.01.004.
|
[10] |
吴松. 火烧环境下含炸药结构热响应行为的数值模拟研究[D]. 绵阳: 中国工程物理研究院, 2014. 51–63.
WU S. Numerical simulation of thermal response behavior of explosive-containing structures in fire environment [D]. Mianyang, Sichuan, China: China Academy of Engineering Physics, 2014: 51–63.
|
[11] |
徐瑞. 热刺激下缓释结构与炸药响应烈度关系的研究[D]. 太原: 中北大学, 2021: 45–53. DOI: 10.27470/d.cnki.ghbgc.2021.000588.
XU R. Study on the relationship between sustained-release structure and explosive response intensity under thermal stimulation [D]. Taiyuan, Shanxi, China: North University of China, 2021: 45–53. DOI: 10.27470/d.cnki.ghbgc.2021.000588.
|
[12] |
ZHU M, WANG S G, HUANG H, et al. Numerical and experimental study on the response characteristics of warhead in the fast cook-off process [J]. Defence Technology, 2021, 17(4): 1444–1452. DOI: 10.3969/j.issn.2214-9147.2021.04.030.
|
[13] |
陈科全, 黄亨建, 路中华, 等. 一种弹体排气缓释结构设计方法与试验研究 [J]. 弹箭与制导学报, 2015, 35(4): 4. DOI: 10.15892/j.cnki.djzdxb.2015.04.004.
CHEN K Q, HUANG H J, LU Z H, et al. Design method and experimental study of a slow-release structure for projectile exhaust [J]. Journal of Rocket and Guidance, 2015, 35(4): 4. DOI: 10.15892/j.cnki.djzdxb.2015.04.004.
|
[14] |
徐瑞, 智小琦, 王帅. 缓释结构对B炸药烤燃响应烈度的影响 [J]. 高压物理学报, 2021, 35(3): 035201. DOI: 10.11858/gywlxb.20200657.
XU R, ZHI X Q, WANG S. Influence of sustained-release structure on the response intensity of B explosives [J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 035201. DOI: 10.11858/gywlxb.20200657.
|
[15] |
邓海, 沈飞, 梁争峰, 等. 不同约束条件下B炸药的慢烤响应特性 [J]. 火炸药学报, 2018, 41(5): 6. DOI: 10.14077/j.issn.1007-7812.2018.05.008.
DENG H, SHEN F, LIANG Z F, et al. Slow-baking response characteristics of B explosive under different constraints [J]. Chinese Journal of Explosives and Propellants, 2018, 41(5): 6. DOI: 10.14077/j.issn.1007-7812.2018.05.008.
|
[16] |
BRADLEY D, MITCHESON A. The venting of gaseous explosions in spherical vessels. Ⅱ: theory and experiment [J]. Combustion and Flame, 1978, 32: 237–255. DOI: 10.1016/0010-2180(78)90098-6.
|
[17] |
GRAHAM K J. Mitigation of fuel fire threat to large rocket motors by venting [R]. California, United States: Air Force Research Laboratory Edwards Air Force Base, 2010.
|
[18] |
SAHIN H, NARIN B, FUNDA D. Development of a design methodology against fast cook-off threat for insensitive munitions [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(3): 580–587. DOI: 10.1002/prep.201500333.
|
[19] |
VETTER R F. Reduction of fuel fire cook-off hazard of rocket motors [R]. Naval Air Weapons Station China Lake, 1977.
|
[20] |
MCCHRISTIAN L, CISTANO J, FOXX C, et al. Vulnerability of nuclear weapon systems to fire studies of burning explosives: RTD-TDR-63-3086 [R]. Chicago: Illinois Institute of Technology, 1963.
|
[21] |
周捷. 熔铸混合炸药慢速烤燃机理研究[D]. 太原: 中北大学, 2020. DOI: 10.27470/d.cnki.ghbgc.2020.000464.
ZHOU J. Study on the slow roasting mechanism of molten-cast mixed explosives [D]. Taiyuan, Shanxi, China: North University of China, 2020. DOI: 10.27470/d.cnki.ghbgc.2020.000464.
|
[22] |
张俊, 刘荣忠, 郭锐, 等. 高速旋转飞行弹丸外弹道表面温度场研究 [J]. 兵工学报, 2013, 34(4): 425–430. DOI: 10.3969/j.issn.1000-1093.2013.04.007.
ZHANG J, LIU R Z, GUO R, et al. Research on the temperature field of the outer ballistic surface of the high-speed rotating flying projectile [J]. Acta Armamentarii, 2013, 34(4): 425–430. DOI: 10.3969/j.issn.1000-1093.2013.04.007.
|
[23] |
KOERNER J, MAIENSCHEIN J, BLACK K, et al. LX-17 deflagration at high pressures and temperatures: UCRL-CONF-225607 [R]. Livermore, California, United States: Lawrence Livermore National Laboratory, 2006.
|
[24] |
GLASCOE E, MAIENSCHEIN J, BURNHAM A, et al. PBXN-9 ignition kinetics and deflagration rates: LLNL-PROC-403194 [R]. Livermore, California, United States: Lawrence Livermore National Laboratory, 2008.
|
[25] |
GLASCOE E, SPRINGER H K, TRINGE J, et al. A comparison of deflagration rates at elevated pressures and temperatures with thermal explosion results [C]//17th Biennial International Conference of the APS Topical Group on Shock Compression of Condensed Matter. Chicago, Illinois, United States, 2011.
|
[26] |
潘文达. 俄国的炸药燃烧数据库 [J]. 火炸药学报, 1994(2): 35–37.
PAN W D. Russian explosive combustion database [J]. Chinese Journal of Explosives and Propellants, 1994(2): 35–37.
|
[27] |
姚奎光, 赵学峰, 樊星, 等. 高压下PBX-1炸药的燃速-压力特性 [J]. 爆炸与冲击, 2020, 40(1): 011404. DOI: 10.11883/bzycj-2019-0347.
YAO K G, ZHAO X F, FAN X, et al. Burning rate-pressure characteristics of PBX-1 explosive under high pressure [J]. Explosion and Shock Waves, 2020, 40(1): 011404. DOI: 10.11883/bzycj-2019-0347.
|