Xu Shuai, Peng Jian-yu, Li Yuan-hui, An Long, Wu Jin. Blasting parameter optimization of medium-depth hole caving for steeply inclined thin veins[J]. Explosion And Shock Waves, 2015, 35(5): 682-688. doi: 10.11883/1001-1455(2015)05-0682-07
Citation: LIU Jun, SUN Zhiyuan, ZHANG Fengguo, YIN Jianwei. Simulation analysis of the effect of clearance on motion characteristic of metal flyer under detonation loading[J]. Explosion And Shock Waves, 2023, 43(4): 042201. doi: 10.11883/bzycj-2022-0239

Simulation analysis of the effect of clearance on motion characteristic of metal flyer under detonation loading

doi: 10.11883/bzycj-2022-0239
  • Received Date: 2022-05-31
  • Rev Recd Date: 2022-08-25
  • Available Online: 2022-09-09
  • Publish Date: 2023-04-05
  • Clearance of certain thickness often exists between two stacked metal flyers. When a double-layer metal flyer with clearance is loaded by detonation, the closing of the clearance may affect the form and shock intensity of the first and second loading waves inside of the outer flyer, and then affects the free surface velocity of the outer flyer. In order to better grasp the motion characteristics under detonation loading, the effect of clearance on the dynamic process needs to be studied. Firstly, a detonation driven two-layer steel flyers model is presented, in which a clearance of certain thickness is assumed to exist between two steel flyers. In this model, the free surface of the outer flyer is loaded twice. By comparing the simulation results and experimental results of free surface velocity at different positions, it is confirmed that the simulation can correctly catch the dynamic process. Then, the sources of the first and second loading in the outer flyer are given by the analysis of the simulated dynamic process. The first loading wave in the outer flyer comes from the clearance closing collision, and the second loading wave mainly comes from the sustained high pressure loading of detonation products. Finally, the simulation with various clearance thicknesses is carried out, and the effect of clearance thickness change is summarized. The simulated results of free surface velocity show that with the increase of clearance thickness from 0.1 mm to more than 1 mm, the peak value of the first take-off free surface velocity first decreases and then remains unchanged, and the peak value of the second take-off free surface velocity first increases and then remains unchanged. The dynamic analysis shows that the size of the clearance thickness directly affects whether the inner steel flyer has enough time to develop into spallation on the clearance side after detonation loading. If the size of clearance is small, the inner flyer cannot develop into a spallation on clearance side, and the first loading wave formed in the outer flyer has a triangular like pulse. In this stage, with the increase of the clearance thickness, the first loading peak pressure decreases and the second loading peak pressure increases. If the size of clearance is large, the inner flyer can form a spallation with constant thickness and stable velocity on clearance side, and the first loading wave formed in the outer flyer is an approximate square wave. In this stage, with the increase of clearance thickness, the peak pressures of the first and second loading remain basically unchanged, but the time interval between the first and second loading decreases. The understanding has guiding significance for the interpretation of the free surface velocity measurement results in experiments, and some unexpected physical phenomena caused by clearance in practical problems could be better understood, too.
  • [1]
    李涛, 刘明涛, 王晓燕, 等. 装配垫层与间隙对爆轰加载下金属飞片运动特征的影响 [J]. 高压物理学报, 2018, 32(4): 044202. DOI: 10.11858/gywlxb.20170576.

    LI T, LIU M T, WANG X Y, et al. Effects of explosive device with foam cushion and air clearance on kinetic characteristic of steel flyer under detonation loading [J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 044202. DOI: 10.11858/gywlxb.20170576.
    [2]
    贺年丰, 张绍龙, 洪仁楷, 等. 间隙对金属锡爆轰加载过程的影响 [J]. 爆炸与冲击, 2021, 41(1): 012101. DOI: 10.11883/bzycj-2020-0054.

    HE N F, ZHANG S L, HONG R K, et al. Effects of gap on the explosive loading process of tin [J]. Explosion and Shock Waves, 2021, 41(1): 012101. DOI: 10.11883/bzycj-2020-0054.
    [3]
    李雪交, 马宏昊, 沈兆武. 铝合金与槽型界面钢板的爆炸焊接 [J]. 爆炸与冲击, 2016, 36(5): 640–647. DOI: 10.11883/1001-1455(2016)05-0640-08.

    LI X J, MA H H, SHEN Z W. Explosive welding of interface between aluminum alloy and steel plate with dovetail grooves [J]. Explosion and Shock Waves, 2016, 36(5): 640–647. DOI: 10.11883/1001-1455(2016)05-0640-08.
    [4]
    何长江, 周海兵, 杭义洪. 爆轰驱动金属铝界面不稳定性的数值分析 [J]. 中国科学 G辑: 物理学 力学 天文学, 2010, 53(2): 195–198. DOI: 10.1007/s11433-009-0261-4.

    HE C J, ZHOU H B, HANG Y H. A numerical study on Rayleigh-Taylor instability of aluminum plates driven by detonation [J]. Science China Physics, Mechanics and Astronomy, 2010, 53(2): 195–198. DOI: 10.1007/s11433-009-0261-4.
    [5]
    殷建伟, 潘昊, 吴子辉, 等. 爆轰驱动Cu界面的Richtmyer-Meshkov扰动增长稳定性 [J]. 物理学报, 2017, 66(20): 204701. DOI: 10.7498/aps.66.204701.

    YIN J W, PAN H, WU Z H, et al. Stability analysis of interfacial Richtmyer-Meshkov flow of explosion-driven copper interface [J]. Acta Physica Sinica, 2017, 66(20): 204701. DOI: 10.7498/aps.66.204701.
    [6]
    刘军, 冯其京, 周海兵. 柱面内爆驱动金属界面不稳定性的数值模拟研究 [J]. 物理学报, 2014, 63(15): 155201. DOI: 10.7498/aps.63.155201.

    LIU J, FENG Q J, ZHOU H B. Simulation study of interface instability in metals driven by cylindrical implosion [J]. Acta Physica Sinica, 2014, 63(15): 155201. DOI: 10.7498/aps.63.155201.
    [7]
    张维岩, 叶文华, 吴俊峰, 等. 激光间接驱动聚变内爆流体不稳定性研究 [J]. 中国科学: 物理学 力学 天文学, 2014, 44(1): 1–23. DOI: 10.1360/SSPMA2013-00039.

    ZHANG W Y, YE W H, WU J F, et al. Hydrodynamic instabilities of laser indirect-drive inertial-confinement-fusion implosion [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2014, 44(1): 1–23. DOI: 10.1360/SSPMA2013-00039.
    [8]
    王涛, 汪兵, 林健宇, 等. 内爆加载下界面不稳定性和湍流混合数值模拟研究 [J]. 中国科学: 物理学 力学 天文学, 2020, 50(10): 104704. DOI: 10.1360/SSPMA-2019-0420.

    WANG T, WANG B, LIN J Y, et al. Numerical investigations of interface instability and turbulent mixing driven by implosion [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50(10): 104704. DOI: 10.1360/SSPMA-2019-0420.
    [9]
    曾翔宇, 李晓杰, 曹景祥, 等. 材料强度对爆炸焊接结合界面的影响 [J]. 爆炸与冲击, 2019, 39(5): 137–143. DOI: 10.11883/bzycj-2018-0400.

    ZENG X Y, LI X J, CAO J X, et al. Interface characteristics of explosive welding for different strength plates [J]. Explosion and Shock Waves, 2019, 39(5): 137–143. DOI: 10.11883/bzycj-2018-0400.
    [10]
    张登霞, 李国豪, 周之洪, 等. 材料强度在爆炸焊接界面波形成过程中的作用 [J]. 力学学报, 1984, 16(1): 73–80.

    ZHANG D X, LI G H, ZHOU Z H, et al. Effect of material strength on forming process of explosive welding interface wave [J]. Acta Mechanica Sinica, 1984, 16(1): 73–80.
    [11]
    虞德水, 赵锋, 谭多望, 等. JOB-9003和JB-9014炸药平面爆轰驱动飞片的对比研究 [J]. 爆炸与冲击, 2006, 26(2): 140–144. DOI: 10.11883/1001-1455(2006)02-0140-05.

    YU D S, ZHAO F, TAN D W, et al. Experimental studies on detonation driving behaviorof JOB-9003 and JB-9014 slab explosives [J]. Explosion and Shock Waves, 2006, 26(2): 140–144. DOI: 10.11883/1001-1455(2006)02-0140-05.
    [12]
    WHIRLEY R G, ENGELMANN B E. DYNA2D: a nonlinear, explicit, two-dimensional finite element code for solid mechanics: user manual: UCRL-MA-110630 [R]. Washington: Lawrence Livermore National Laboratory, 1992.
    [13]
    袁帅, 周显明, 李平. 液体炸药-惰性材料组合式平面波透镜数值模拟 [J]. 兵工学报, 2010, 31(S1): 159–161.

    YUAN S, ZHOU X M, LI P. Simulation of plane wave lens with the combinition of liquid explosive and inert material [J]. Acta Armamentarii, 2010, 31(S1): 159–161.
    [14]
    韩勇, 魏智勇, 黄毅民, 等. 平面波透镜实验与数值模拟 [J]. 含能材料, 2007, 15(5): 471–473. DOI: 10.3969/j.issn.1006-9941.2007.05.008.

    HAN Y, WEI Z Y, HUANG Y M, et al. Experiment and numerical simulation of plane wave lens [J]. Chinese Journal of Energetic Materials, 2007, 15(5): 471–473. DOI: 10.3969/j.issn.1006-9941.2007.05.008.
    [15]
    孙承纬. 炸药平面波透镜的有效药量 [C]//爆轰研究论文集, 第3卷. 绵阳: 中国工程物理研究院流体物理研究所, 1998: 307-316.
    [16]
    林文洲, 林忠, 刘全. 非结构多边形网格滑移线开穴算法 [J]. 计算物理, 2017, 34(3): 273–282. DOI: 10.3969/j.issn.1001-246X.2017.03.004.

    LIN W Z, LI Z, LIU Q. An open void method of slide line on unstructured N-polygon grids [J]. Chinese Journal of Computational Physics, 2017, 34(3): 273–282. DOI: 10.3969/j.issn.1001-246X.2017.03.004.
    [17]
    JOHNSON JN. Dynamic fracture and spallation in ductile solids [J]. Journal of Applied Physics, 1981, 52(4): 2812–2825. DOI: 10.1063/1.329011.
    [18]
    董海山, 周芬芬. 高能炸药及相关物性能[M]. 北京: 科学出版社, 1989.
    [19]
    STEINBERG D J. Equation of state and strength properties of selected materials: UCRL-MA-106439 [R]. Washington: Lawrence Livermore National Laboratory, 1996.
    [20]
    张林, 张祖根, 秦晓云, 等. D6A、921和45钢的动态破坏与低压冲击特性 [J]. 高压物理学报, 2003, 17(4): 305–310. DOI: 10.11858/gywlxb.2003.04.011.

    ZHANG L, ZHANG Z G, QIN X Y, et al. Dynamic fracture and mechanical property of D6A, 921 and 45 steels under low shock pressure [J]. Chinese Journal of High Pressure Physics, 2003, 17(4): 305–310. DOI: 10.11858/gywlxb.2003.04.011.
    [21]
    胡昌明, 贺红亮, 胡时胜. 45号钢的动态力学性能研究 [J]. 爆炸与冲击, 2003, 23(2): 188–192.

    HU C M, HE H L, HU S S. A study on dynamic mechancial behaviors of 45 steel [J]. Explosion and Shock Waves, 2003, 23(2): 188–192.
  • Relative Articles

    [1]WANG Mafa, LI Junling, LIU Sen. The influence of density gradient of driving gas on projectile launching velocity[J]. Explosion And Shock Waves, 2023, 43(4): 042202. doi: 10.11883/bzycj-2022-0209
    [2]ZHANG Xuan, YU Yonggang, ZHANG Xinwei. Analysis of muzzle flow field characteristics of gun fired in different media[J]. Explosion And Shock Waves, 2021, 41(10): 103901. doi: 10.11883/bzycj-2021-0056
    [3]ZHANG Jinghui, YU Yonggang. Numerical investigation on the muzzle flow field of an underwater submerged launched ballistic gun at different water depths[J]. Explosion And Shock Waves, 2020, 40(10): 104201. doi: 10.11883/bzycj-2019-0478
    [4]WANG Zhen, WANG Tao, BAI Jingsong, XIAO Jiaxin. Numerical study of non-uniformity effect on Richtmyer-Meshkov instability induced by non-planar shock wave[J]. Explosion And Shock Waves, 2019, 39(4): 041407. doi: 10.11883/bzycj-2018-0342
    [5]Wu Wei, Xu Hou-qian, Wang Liang, Xue Rui. Numerical simulation of a muzzle flow field involving chemical reactions based on gridless method[J]. Explosion And Shock Waves, 2015, 35(5): 625-632. doi: 10.11883/1001-1455(2015)05-0625-08
    [6]Zhao Xiao-long, Ma Tie-hua, Xu Peng, Fan Jin-biao. Acceleration signal test and analysis for projectile penetrating into concrete[J]. Explosion And Shock Waves, 2014, 34(3): 347-353. doi: 10.11883/1001-1455(2014)03-0347-07
    [7]Zhou Guang-yu, Hu Shi-sheng. Pulse-shaping techniques of high-g-value acceleration generators[J]. Explosion And Shock Waves, 2013, 33(5): 479-486. doi: 10.11883/1001-1455(2013)05-0479-08
    [8]LIPing, GAO Shi-qiao, JINLei, SHI Yun-bo. Effectsofpackagematerialsonperformances ofapiezoresistiveMEMSacceleromete[J]. Explosion And Shock Waves, 2012, 32(6): 623-628. doi: 10.11883/1001-1455(2012)06-0623-06
    [9]ZHU Yi-Chao, GAO Cheng, LI Yan-Xin, CHEN Yong-Guang. Design and realization of an acceleration measurement system by using Model 1221[J]. Explosion And Shock Waves, 2010, 30(3): 333-336. doi: 10.11883/1001-1455(2010)03-0333-04
    [10]YUN Lai-feng, RUI Xiao-ting, HOU Ri-sheng, HE Bin. Calculation of launch dynamics with two-phase flow interior ballistic model for self-propelled artillery[J]. Explosion And Shock Waves, 2007, 27(1): 12-17. doi: 10.11883/1001-1455(2007)01-0012-06
    [11]ZHANG Wei, MA Wen-lai, GUAN Gong-shun, PANG Bao-jun. Numerical simulation of non-spherical projectiles hypervelocity impact on spacecraft shield configuration[J]. Explosion And Shock Waves, 2007, 27(3): 240-245. doi: 10.11883/1001-1455(2007)03-0240-06
    [12]WANG Wen-jun, HU Shi-sheng. Calibration of high shock acceleration sensors[J]. Explosion And Shock Waves, 2006, 26(6): 568-571. doi: 10.11883/1001-1455(2006)06-0568-04
    [13]LI Qian, HONG Yan-ji, CAO Zheng-rui. Numerical simulation of thrust generating mechanism for air-breathing laser propulsion[J]. Explosion And Shock Waves, 2006, 26(6): 550-555. doi: 10.11883/1001-1455(2006)06-0550-06
  • Cited by

    Periodical cited type(19)

    1. 李元辉,丁跃跃,孔伟中,李坤蒙,肖贵轩. 急倾斜薄矿脉开采技术现状与“采—选—充”协同开采新模式. 金属矿山. 2025(01): 27-36 .
    2. 林海祥,洪巧,熊泽华,张鑫,林金山. 基于数值模拟的银山矿上向中深孔爆破网格参数优化. 采矿技术. 2024(01): 127-132 .
    3. 张小瑞,贾志伟,安龙. 深部急倾斜薄矿体中深孔爆破夹制力量化分析. 黄金. 2024(08): 52-57 .
    4. 何丽华,赵艳伟,孙进辉,陈浩,孙龙,任骏. 临近胶结充填体矿房爆破参数数值模拟分析. 云南冶金. 2024(04): 30-38 .
    5. 汪杰,袁兵,勒治华,叶光祥,汪光鑫,郭成淋. 深孔采矿法在急倾斜极薄钨矿脉的应用. 中国钨业. 2024(05): 1-7 .
    6. 王瑜,董二虎,张旭飞,孟祥凯. 金属矿中深孔微差爆破起爆延时精准识别与段别优化. 金属矿山. 2023(06): 61-70 .
    7. 张双侠,刘志祥,杨小聪,熊帅,陈祉颖,黄麟淇. 高地应力下扇形孔爆破损伤特性分析及优化设计(英文). Journal of Central South University. 2023(06): 1887-1899 .
    8. 林凌旺. 急倾斜极薄矿脉深孔回采贫化控制研究. 采矿技术. 2023(05): 18-21 .
    9. 杨学武,王煜鑫. 急倾斜薄矿体中深孔爆破试验研究. 采矿技术. 2023(05): 108-111 .
    10. 刘涛,姜培根,乔俊斌,白腾飞,任基. 脉内顺路天井中深孔嗣后充填采矿法在玲珑金矿的应用. 黄金. 2023(12): 10-13 .
    11. 谢国森,罗春梧,宋丽霞,张德全,张煜晖,秦旭忠. 棉花坑矿床破碎矿体深孔连续采矿工艺研究. 铀矿冶. 2022(04): 394-400 .
    12. 周斌. 中深孔爆破技术在极不稳固薄矿脉中的应用. 采矿技术. 2021(05): 140-142+148 .
    13. 姜永恒,雷恒永,杨杰,唐学义,宋士生,叶光祥. 镇沅金矿中深孔爆破参数数值模拟研究. 爆破. 2019(01): 77-83 .
    14. 刘飞,常坤林,李猛. 布孔方式及延期时间对煤体破碎效果影响的数值模拟. 矿业科学学报. 2019(04): 318-326 .
    15. 陈清运,余少平,彭静波,郑祖静,徐正碧,张惠君,黄贞林. 金鼎钨钼矿露天台阶深孔爆破参数优化. 爆破. 2018(01): 75-79+95 .
    16. 李启月,张成君,吴正宇,陈英,韦佳瑞. 受限自由面爆破装药量计算公式的优化研究. 爆破. 2017(01): 37-41+66 .
    17. 杨平,王雪峰. 基于数值模拟技术改善异位孔爆破效果研究. 工程爆破. 2017(05): 27-32 .
    18. 戚伟,曹帅,宋卫东. 中深孔嗣后废石充填采矿法在急倾斜薄矿脉开采中的试验应用. 黄金. 2017(02): 30-33 .
    19. 石晨晨,刘雅楠,黄伟强,李祥龙. 深部采场爆破参数数值模拟设计优化研究. 价值工程. 2017(14): 116-120 .

    Other cited types(8)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (557) PDF downloads(112) Cited by(27)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return