Volume 42 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
LIU Junwei, ZHANG Xianfeng, ZHAO Yaoyao, WEI Haiyang, LIU Chuang, LI Pengcheng. Failure modes and response characteristics of finite-thickness aluminum targets under normal penetration of elliptical cross-section projectiles[J]. Explosion And Shock Waves, 2022, 42(12): 123301. doi: 10.11883/bzycj-2022-0249
Citation: LIU Junwei, ZHANG Xianfeng, ZHAO Yaoyao, WEI Haiyang, LIU Chuang, LI Pengcheng. Failure modes and response characteristics of finite-thickness aluminum targets under normal penetration of elliptical cross-section projectiles[J]. Explosion And Shock Waves, 2022, 42(12): 123301. doi: 10.11883/bzycj-2022-0249

Failure modes and response characteristics of finite-thickness aluminum targets under normal penetration of elliptical cross-section projectiles

doi: 10.11883/bzycj-2022-0249
  • Received Date: 2022-06-08
  • Rev Recd Date: 2022-08-25
  • Available Online: 2022-09-16
  • Publish Date: 2022-12-08
  • By means of a 30-mm-caliber ballistic gun platform, a series of experiments were carried out on 2A12 aluminum targets subjected to normal penetration by three kinds of 30CrMnSi2A steel projectiles with different elliptical cross-section shapes in the striking velocity range from 200 m/s to 600 m/s. The residual velocities of the projectiles and the failure modes of the targets were experimentally obtained. Based on the experimental results, the corresponding numerical models were established and verified. And the influences of the major-to-minor axis length ratios of the projectile cross-sections on the failure modes and response characteristics of the targets were systematically analyzed. The results show as follows. The maximum cross-sectional areas of the projectiles are the main factor affecting the residual velocities of the projectiles, while the major-to-minor axis length ratios of the projectile cross-sections have little effect on the residual velocities. Therefore, in engineering applications, the engineering model for the circular cross-section projectile penetrating a target can be directly used to calculate the residual velocity of the elliptical cross-section projectile with the same maximum cross-sectional area. In addition, under normal penetration of the circular cross-section projectiles, the sizes, shapes and distribution of the petals induced at the back faces of the targets are uniform. However, under normal penetration of the elliptical cross-section projectiles, as the major-to-minor axis length ratios of the projectile cross-sections increase, the numbers of the petals induced at the back faces of the targets increase and the petal sizes decrease, and the petal numbers and the uplifted height in the minor axis direction are greater than those in the major axis direction. The radial displacement, radial stress and tangential stress of the targets under the normal penetration of the elliptical cross-section projectiles are obviously different from those of the targets under the normal penetration of the circular cross-section projectiles. Under normal penetrations of the circular cross-section projectiles, the above response characteristics of the targets change basically the same along the circumferential directions and the targets are under simple compression states with the tangential stress of zero. But, under normal penetrations of the elliptical cross-section projectiles, the stress states of different points of the targets are closely related to the major-to-minor axis length ratios and the circumferential angles of the projectiles, and the targets are subjected to the coupling effects of the compression and shear stresses.
  • loading
  • [1]
    VEDERNIKOV Y A, LEVIN V A, KHUDYAKOV Y S. Evolution and comparative analysis of group armor- and aeroballistics of ancient and modern ruled and poly-wedge arrows [J]. Bulletin of the Novosibirsk Computing Center. Series: Mathematical Modeling in Geophysics, 2005, 10: 93–116.
    [2]
    DAI X H, WANG K H, LI M R, et al. Rigid elliptical cross-section ogive-nose projectiles penetration into concrete targets [J]. Defence Technology, 2021, 17(3): 800–811. DOI: 10.1016/j.dt.2020.05.011.
    [3]
    MA X H, ZHANG Q M, ZHANG X W. A model for rigid asymmetric ellipsoidal projectiles penetrating into metal plates [J]. International Journal of Impact Engineering, 2022, 163: 104140. DOI: 10.1016/j.ijimpeng.2021.104140.
    [4]
    BEN-DOR G, DUBINSKY A, ELPERIN T. Optimal 3D impactors penetrating into layered targets [J]. Theoretical and Applied Fracture Mechanics, 1997, 27(3): 161–166. DOI: 10.1016/S0167-8442(97)00018-9.
    [5]
    BEN-DOR G, DUBINSKY A, ELPERIN T. A model for predicting penetration and perforation of FRP laminates by 3-D impactors [J]. Composite Structures, 2002, 56(3): 243–248. DOI: 10.1016/S0263-8223(02)00009-0.
    [6]
    YAKUNINA G Y. The construction of optimum three-dimensional shapes within the framework of a model of local interaction [J]. Journal of Applied Mathematics and Mechanics, 2000, 64(2): 289–298. DOI: 10.1016/S0021-8928(00)00051-4.
    [7]
    YAKUNINA G Y. The optimum non-conical and asymmetrical three-dimensional configurations [J]. Journal of Applied Mathematics and Mechanics, 2000, 64(4): 583–591. DOI: 10.1016/S0021-8928(00)00084-8.
    [8]
    WOO H J. Cavity expansion analysis of non-circular cross-sectional penetration problems [D]. Austin, Texas, USA: The University of Texas at Austin, 1997: 132–154.
    [9]
    BLESS S J. Penetration mechanics of non-circular rods [J]. AIP Conference Proceedings, 1996, 370(1): 1119–1122. DOI: 10.1063/1.50861.
    [10]
    杜忠华, 曾国强, 余春祥, 等. 异型侵彻体垂直侵彻半无限靶板试验研究 [J]. 弹道学报, 2008, 20(1): 19–21.

    DU Z H, ZENG G Q, YU C X, et al. Experimental research of novel penetrator vertically penetrating semi-infinite target [J]. Journal of Ballistics, 2008, 20(1): 19–21.
    [11]
    杜忠华, 朱建生, 王贤治, 等. 异型侵彻体垂直侵彻半无限靶板的分析模型 [J]. 兵工学报, 2009, 30(4): 403–407. DOI: 10.3321/j.issn:1000-1093.2009.04.005.

    DU Z H, ZHU J S, WANG X Z, et al. Analytical model on non-circular penetrator impacting semi-infinite target perpendicularly [J]. Acta Armamentarii, 2009, 30(4): 403–407. DOI: 10.3321/j.issn:1000-1093.2009.04.005.
    [12]
    高光发, 李永池, 刘卫国, 等. 长杆弹截面形状对垂直侵彻深度的影响 [J]. 兵器材料科学与工程, 2011, 34(3): 5–8. DOI: 10.3969/j.issn.1004-244X.2011.03.002.

    GAO G F, LI Y C, LIU W G, et al. Influence of the cross-section shapes of long rod projectile on the vertical penetration depth [J]. Ordnance Material Science and Engineering, 2011, 34(3): 5–8. DOI: 10.3969/j.issn.1004-244X.2011.03.002.
    [13]
    DONG H, LIU Z H, WU H J, et al. Study on penetration characteristics of high-speed elliptical cross-sectional projectiles into concrete [J]. International Journal of Impact Engineering, 2019, 132: 103311. DOI: 10.1016/j.ijimpeng.2019.05.025.
    [14]
    DONG H, WU H J, LIU Z H, et al. Penetration characteristics of pyramidal projectile into concrete target [J]. International Journal of Impact Engineering, 2020, 143: 103583. DOI: 10.1016/j.ijimpeng.2020.103583.
    [15]
    GAO X D, LI Q M. Trajectory instability and convergence of the curvilinear motion of a hard projectile in deep penetration [J]. International Journal of Mechanical Sciences, 2017, 121: 123–142. DOI: 10.1016/j.ijmecsci.2016.12.021.
    [16]
    高旭东, 李庆明. 带攻角斜侵彻混凝土的弹道偏转分析 [J]. 兵工学报, 2014, 35(Supp1 2): 33–39.

    GAO X D, LI Q M. Trajectory analysis of projectile obliquely penetrating into concrete target at attack angle [J]. Acta Armamentarii, 2014, 35(Supp1 2): 33–39.
    [17]
    王浩, 武海军, 闫雷, 等. 椭圆横截面弹体斜贯穿双层间隔薄钢板失效模式 [J]. 兵工学报, 2020, 41(Suppl 2): 1–11. DOI: 10.3969/j.issn.1000-1093.2020.S2.001.

    WANG H, WU H J, YAN L, et al. Failure mode of oblique perforation of truncated ogive-nosed projectiles with elliptic cross-section into double-layered thin steel plate with gap space [J]. Acta Armamentarii, 2020, 41(Suppl 2): 1–11. DOI: 10.3969/j.issn.1000-1093.2020.S2.001.
    [18]
    王浩, 潘鑫, 武海军, 等. 椭圆截面截卵形刚性弹体正贯穿加筋板能量耗散分析 [J]. 爆炸与冲击, 2019, 39(10): 103203. DOI: 10.11883/bzycj-2018-0350.

    WANG H, PAN X, WU H J, et al. Energy dissipation analysis of elliptical truncated oval rigid projectile penetrating stiffened plate [J]. Explosion and Shock Waves, 2019, 39(10): 103203. DOI: 10.11883/bzycj-2018-0350.
    [19]
    LANDKOF B, GOLDSMITH W. Petalling of thin, metallic plates during penetration by cylindro-conical projectiles [J]. International Journal of Solids and Structures, 1985, 21(3): 245–266. DOI: 10.1016/0020-7683(85)90021-6.
    [20]
    张中国, 黄风雷, 段卓平, 等. 弹体侵彻带加强筋结构靶的实验研究 [J]. 爆炸与冲击, 2004, 24(5): 431–436. DOI: 10.3321/j.issn:1001-1455.2004.05.009.

    ZHANG Z G, HUANG F L, DUAN Z P, et al. The experimental research for projectile penetrating the structural target with rebar [J]. Explosion and Shock Waves, 2004, 24(5): 431–436. DOI: 10.3321/j.issn:1001-1455.2004.05.009.
    [21]
    CHEN Y, WANG Y, TANG P, et al. Impact characteristics of stiffened plates penetrated by sub-ordnance velocity projectiles [J]. Journal of Constructional Steel Research, 2008, 64(6): 634–643. DOI: 10.1016/j.jcsr.2007.12.006.
    [22]
    SONG W D, NING J G, WANG J. Normal impact of truncated oval-nosed projectiles on stiffened plates [J]. International Journal of Impact Engineering, 2008, 35(9): 1022–1034. DOI: 10.1016/j.ijimpeng.2007.05.008.
    [23]
    徐双喜, 吴卫国, 李晓彬, 等. 截锥形弹穿甲单加筋板的破坏特性 [J]. 爆炸与冲击, 2011, 31(1): 62–68. DOI: 10.11883/1001-1455(2011)01-0062-07.

    XU S X, WU W G, LI X B, et al. Falure characteristics of a conical projectile penetrating single stiffened plate [J]. Explosion and Shock Waves, 2011, 31(1): 62–68. DOI: 10.11883/1001-1455(2011)01-0062-07.
    [24]
    LIU J W, ZHANG X F, WEI H Y, et al. Study on the penetration of elliptical cross-section projectiles into concrete targets: theory and experiment [J]. Latin American Journal of Solids and Structures, 2022, 19(3): 23. DOI: 10.1590/1679-78256939.
    [25]
    李磊, 张先锋, 吴雪, 等. 不同硬度30CrMnSiNi2A钢的动态本构与损伤参数 [J]. 高压物理学报, 2017, 31(3): 239–248. DOI: 10.11858/gywlxb.2017.03.005.

    LI L, ZHANG X F, WU X, et al. Dynamic constitutive and damage parameters of 30CrMnSiNi2A steel with different hardnesses [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 239–248. DOI: 10.11858/gywlxb.2017.03.005.
    [26]
    米双山, 张锡恩, 陶贵明. 钨球侵彻LY-12铝合金靶板的有限元分析 [J]. 爆炸与冲击, 2005, 25(5): 477–480. DOI: 10.11883/1001-1455(2005)05-0477-04.

    MI S S, ZHANG X E, TAO G M. Finite element analysis of spherical fragments penetrating LY-12 aluminum alloy target [J]. Explosion and Shock Waves, 2005, 25(5): 477–480. DOI: 10.11883/1001-1455(2005)05-0477-04.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(5)

    Article Metrics

    Article views (377) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return