Citation: | WANG Cunhong, CAO Yuwu, CHEN Jin, KONG Lin, SUN Xingyun. Research progress in mechanical behaviors of metallic energetic materials[J]. Explosion And Shock Waves, 2023, 43(7): 071101. doi: 10.11883/bzycj-2022-0251 |
[1] |
Committee on Advanced Energetic Materials and Manufacturing Technologies, National Research Council. Advanced energetic materials [M]. Washington DC, USA: The National Academies Press, 2004: 20–23.
|
[2] |
王宝成, 袁宝慧. 防空反导破片杀伤战斗部现状与发展 [J]. 四川兵工学报, 2013, 34(9): 20–24. DOI: 10.11809/scbgxb2013.09.007.
WANG B C, YUAN B H. Research states and trend of fragment warhead for air-defense and anti-missile [J]. Journal of Ordnance Equipment Engineering, 2013, 34(9): 20–24. DOI: 10.11809/scbgxb2013.09.007.
|
[3] |
WADDELL J T, BOOTES T H, BUDY G D, et al. Reactive shaped charge, reactive liner, and method for target penetration using a reactive shaped charge: US8037829B1 [P]. 2011-08-18.
|
[4] |
张先锋, 赵晓宁. 多功能含能结构材料研究进展 [J]. 含能材料, 2009, 17(6): 731–739. DOI: 10.3969/j.issn.1006-9941.2009.06.021.
ZHANG X F, ZHAO X N. Review on multifunctional energetic structural materials [J]. Chinese Journal of Energetic Materials, 2009, 17(6): 731–739. DOI: 10.3969/j.issn.1006-9941.2009.06.021.
|
[5] |
叶文君, 汪涛, 鱼银虎. 氟聚物基含能反应材料研究进展 [J]. 宇航材料工艺, 2012, 42(6): 19–23. DOI: 10.3969/j.issn.1007-2330.2012.06.003.
YE W J, WANG T, YU Y H. Research progress of fluoropolymer-matrix energetic reactive materials [J]. Aerospace Materials and Technology, 2012, 42(6): 19–23. DOI: 10.3969/j.issn.1007-2330.2012.06.003.
|
[6] |
陶玉强, 白书欣, 阳世清, 等. 反应结构材料制备技术的研究现状 [J]. 中国有色金属学报, 2017, 27(10): 2079–2090. DOI: 10.19476/j.ysxb.1004.0609.2017.10.15.
TAO Y Q, BAI S X, YANG S Q, et al. Research status of preparation technology for reactive material structures [J]. The Chinese Journal of Nonferrous Metals, 2017, 27(10): 2079–2090. DOI: 10.19476/j.ysxb.1004.0609.2017.10.15.
|
[7] |
陈鹏, 袁宝慧, 陈进, 等. 金属/氟聚物反应材料研究进展 [J]. 飞航导弹, 2018(10): 95–98, 84. DOI: 10.16338/j.issn.1009-1319.20180129.
CHEN P, YUAN B H, CHEN J, et al. Research progress of metal/fluoropolymer reactive materials [J]. Aerodynamic Missile Journal, 2018(10): 95–98, 84. DOI: 10.16338/j.issn.1009-1319.20180129.
|
[8] |
汪德武, 任柯融, 江增荣, 等. 活性材料冲击释能行为研究进展 [J]. 爆炸与冲击, 2021, 41(3): 031408. DOI: 10.11883/bzycj-2020-0337.
WANG D W, REN K R, JIANG Z R, et al. Shock-induced energy release behaviors of reactive materials [J]. Explosion and Shock Waves, 2021, 41(3): 031408. DOI: 10.11883/bzycj-2020-0337.
|
[9] |
陈进, 梁争峰, 周涛. 金属型活性破片战斗部技术研究进展 [J]. 飞航导弹, 2019(4): 89–95. DOI: 10.16338/j.issn.1009-1319.20180309.
CHEN J, LIANG Z F, ZHOU T. Research progress of metallic active fragmentation warhead technology [J]. Aerodynamic Missile Journal, 2019(4): 89–95. DOI: 10.16338/j.issn.1009-1319.20180309.
|
[10] |
SAITO Y, TSUJI N, UTSUNOMIYA H, et al. Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process [J]. Scripta Materialia, 1998, 39(9): 1221–1227. DOI: 10.1016/S1359-6462(98)00302-9.
|
[11] |
RAHMATABADI D, TAYYEBI M, HASHEMI R, et al. Evaluation of microstructure and mechanical properties of multilayer Al5052-Cu composite produced by accmulative roll bonding [J]. Powder Metallurgy and Metal Ceramics, 2018, 57(3/4): 23–34. DOI: 10.1007/s11106-018-9962-4.
|
[12] |
GUO Z H, BAKER A, GUO J, et al. Cold sintering process: a novel technique for low-temperature ceramic processing of ferroelectrics [J]. Journal of the American Ceramic Society, 2016, 99(11): 3489–3507. DOI: 10.1111/jace.14554.
|
[13] |
蔡高参, 符巨博, 张东星, 等. 热等静压技术在钨合金领域的应用研究进展 [J]. 航空制造技术, 2021, 64(23/24): 14–20. DOI: 10.16080/j.issn1671-833x.2021.23/24.014.
CAI G C, FU J B, ZHANG D X, et al. Application of hot isostatic pressing technology in tungsten alloy [J]. Aeronautical Manufacturing Technology, 2021, 64(23/24): 14–20. DOI: 10.16080/j.issn1671-833x.2021.23/24.014.
|
[14] |
CHANG L, SUN W, CUI Y, et al. Influences of hot-isostatic-pressing temperature on microstructure, tensile properties and tensile fracture mode of Inconel 718 powder compact [J]. Materials Science and Engineering: A, 2014, 599: 186–195. DOI: 10.1016/j.msea.2014.01.095.
|
[15] |
THADHANI N N. Shock-induced chemical reactions and synthesis of materials [J]. Progress in Materials Science, 1993, 37(2): 117–226. DOI: 10.1016/0079-6425(93)90002-3.
|
[16] |
BACCIOCHINI A, BOURDON-LAFLEUR S, POUPART C, et al. Ni-Al nanoscale energetic materials: phenomena involved during the manufacturing of bulk samples by cold spray [J]. Journal of Thermal Spray Technology, 2014, 23(7): 1142–1148. DOI: 10.1007/s11666-014-0078-1.
|
[17] |
WANG M Z, LI J L, ZHANG J Z, et al. Microstructure evolution and compressive properties of multilayered Al/Ni energetic structural materials under different strain rates [J]. Journal of Materials Engineering and Performance, 2020, 29: 506–514. DOI: 10.1007/s11665-020-04589-0.
|
[18] |
XIONG W, ZHANG X F, WU Y, et al. Influence of additives on microstructures, mechanical properties and shock-induced reaction characteristics of Al/Ni composites [J]. Journal of Alloys and Compounds, 2015, 648: 540–549. DOI: 10.1016/j.jallcom.2015.07.004.
|
[19] |
XIONG W, ZHANG X F, TAN M T, et al. The energy release characteristics of shock-induced chemical reaction of Al/Ni composites [J]. The Journal of Physical Chemistry C, 2016, 120(43): 24551–24559. DOI: 10.1021/acs.jpcc.6b06530.
|
[20] |
陶玉强, 白书欣, 李顺. Ni/Al复合材料的起始反应温度研究 [J]. 南华大学学报(自然科学版), 2016, 30(3): 73–78. DOI: 10.3969/j.issn.1673-0062.2016.03.017.
TAO Y Q, BAI S X, LI S. Research on the initial reaction temperatures of Ni/Al composites [J]. Journal of University of South China (Science and Technology), 2016, 30(3): 73–78. DOI: 10.3969/j.issn.1673-0062.2016.03.017.
|
[21] |
ZHOU Q, HU Q W, WANG B, et al. Fabrication and characterization of the Ni-Al energetic structural material with high energy density and mechanical properties [J]. Journal of Alloys and Compounds, 2020, 832: 154894. DOI: 10.1016/j.jallcom.2020.154894.
|
[22] |
EAKINS D E, THADHANI N N. Shock compression of reactive powder mixtures [J]. International Materials Reviews, 2009, 54(4): 181–213. DOI: 10.1179/174328009X461050.
|
[23] |
ATKINSON H V, DAVIES S. Fundamental aspects of hot isostatic pressing: an overview [J]. Metallurgical and Materials Transactions A, 2000, 31(12): 2981–3000. DOI: 10.1007/s11661-000-0078-2.
|
[24] |
姜卓钰, 张朋, 包建文, 等. 等静压技术在材料加工领域的应用现状 [J]. 宇航材料工艺, 2017, 47(1): 13–19. DOI: 10.12044/j.issn.1007-2330.2017.01.003.
JIANG Z Y, ZHANG P, BAO J W, et al. Current applications of isostatic pressing technology in materials processing field [J]. Aerospace Materials and Technology, 2017, 47(1): 13–19. DOI: 10.12044/j.issn.1007-2330.2017.01.003.
|
[25] |
ALKHIMOV A P, KOSAREV V F, PAPYRIN A N. A method of “cold” gas-dynamic deposition [J]. Soviet Physics Doklady, 1990, 35(10): 1047.
|
[26] |
GUO D, KAZASIDIS M, HAWKINS A, et al. Cold spray: over 30 years of development toward a hot future [J]. Journal of Thermal Spray Technology, 2022, 31(4): 866–907. DOI: 10.1007/s11666-022-01366-4.
|
[27] |
LEE H, SHIN H, LEE S, et al. Effect of gas pressure on Al coatings by cold gas dynamic spray [J]. Materials Letters, 2008, 62(10/11): 1579–1581. DOI: 10.1016/j.matlet.2007.09.026.
|
[28] |
CHAMPAGNE V K. The cold spray materials deposition process [M]. Cambridge, UK: Woodhead Publishing, 2007.
|
[29] |
王成国, 林俐菁, 刘红丽, 等. 基于高压扭转法制备SiCp/Al基复合材料 [J]. 精密成形工程, 2012, 4(6): 82–84. DOI: 10.3969/j.issn.1674-6457.2012.06.023.
WANG C G, LIN L J, LIU H L, et al. SiCp/Al composites fabricated by high-pressure torsion [J]. Journal of Netshape Forming Engineering, 2012, 4(6): 82–84. DOI: 10.3969/j.issn.1674-6457.2012.06.023.
|
[30] |
LANGAN T, RILEY M A, BUCHTA M W. Reactive shaped charges and thermal spray methods of making same: US, 7278353 [P]. 2007-10-09.
|
[31] |
RUSSELL A M, LUND T, CHUMBLEY L S, et al. A high-strength, high-conductivity Al-Ti deformation processed metal metal matrix composite [J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(3): 239–247. DOI: 10.1016/S1359-835X(98)00163-8.
|
[32] |
HORITA M, NAKAYAMA N, SAITO N, et al. Mechanical properties of titanium/aluminum composite material by compression shearing method at room temperature [C]//Proceedings of the 15th European Conference on Composite Materials. Venice, Italy: European Society for Composite Materials, 2012: 1–5.
|
[33] |
MOZAFFARI A, MANESH H D, JANGHORBAN K. Evaluation of mechanical properties and structure of multilayered Al/Ni composites produced by accumulative roll bonding (ARB) process [J]. Journal of Alloys and Compounds, 2010, 489(1): 103–109. DOI: 10.1016/j.jallcom.2009.09.022.
|
[34] |
崔岩, 王利成, 董常青, 等. 累积叠轧制备Ni/Al多层复合材料 [J]. 热加工工艺, 2019, 48(24): 78–80. DOI: 10.14158/j.cnki.1001-3814.2019.24.018.
CUI Y, WANG L C, DONG C Q, et al. Preparation of Ni/Al multilayer composites by accumulative roll bonding [J]. Hot Working Technology, 2019, 48(24): 78–80. DOI: 10.14158/j.cnki.1001-3814.2019.24.018.
|
[35] |
YANG D K, CIZEK P, HODGSON P, et al. Ultrafine equiaxed-grain Ti/Al composite produced by accumulative roll bonding [J]. Scripta Materialia, 2010, 62(5): 321–324. DOI: 10.1016/j.scriptamat.2009.11.036.
|
[36] |
PATSELOV A, GREENBERG B, GLADKOVSKII S, et al. Layered metal-intermetallic composites in Ti-Al system: strength under static and dynamic load [J]. AASRI Procedia, 2012, 3: 107–112. DOI: 10.1016/j.aasri.2012.11.019.
|
[37] |
张度宝, 汪涛, 鱼银虎, 等. Ni-Al含能结构材料的制备和性能 [J]. 稀有金属材料与工程, 2017, 46(11): 3469–3473.
ZHANG D B, WANG T, YU Y H, et al. Preparation and properties of Ni-Al energetic structural material [J]. Rare Metal Materials and Engineering, 2017, 46(11): 3469–3473.
|
[38] |
THADHANI N N, GRAHAM R A, ROYAL T, et al. Shock-induced chemical reactions in titanium-silicon powder mixtures of different morphologies: time-resolved pressure measurements and materials analysis [J]. Journal of Applied Physics, 1997, 82(3): 1113–1128. DOI: 10.1063/1.365878.
|
[39] |
FERRANTI JR L, THADHANI N N. Dynamic mechanical behavior characterization of epoxy-cast Al+Fe2O3 thermite mixture composites [J]. Metallurgical and Materials Transactions A, 2007, 38(11): 2697–2715. DOI: 10.1007/s11661-007-9272-9.
|
[40] |
CHIU P H, NESTERENKO V F. Dynamic behavior and fracture of granular composite Al-W [C]// Proceedings of DYMAT International Conferences. France: EDP Sciences, 2009: 947–953. DOI: 10.1051/dymat/2009133.
|
[41] |
GRUDZA M E, FLIS W J, LAM H L, et al. Reactive material structures: W911NF-09-C-0014 [R]. King of Prussia, PA, USA: DE Technologies Inc., 2014.
|
[42] |
OLNEY K L, CHIU P H, LEE C W, et al. Role of material properties and mesostructure on dynamic deformation and shear instability in Al-W granular composites [J]. Journal of Applied Physics, 2011, 110(11): 114908. DOI: 10.1063/1.3665644.
|
[43] |
宋丹丹. Ni-Al-W活性复合材料组织与性能关系研究 [D]. 北京: 北京理工大学, 2015: 1–48.
SONG D D. Study on the relationship between microstructure and properties of Ni-Al-W active composite materials [D]. Beijing, China: Beijing Institute of Technology, 2015: 1–48.
|
[44] |
JEON B S, LEE J J, KIM J K. Low velocity impact and delamination buckling behavior of composite laminates with embedded optical fibers [J]. Smart Materials and Structures, l999, 8(1): 41–48. DOI: 10.1088/0964-1726/8/1/004.
|
[45] |
CAI J, WALLEY S M, HUNT R J A, et al. High-strain, high-strain-rate flow and failure in PTFE/Al/W granular composites [J]. Materials Science and Engineering: A, 2008, 472(1/2): 308–315. DOI: 10.1016/j.msea.2007.03.068.
|
[46] |
KOLSKY H. An investigation of the mechanical properties of materials at very high rates of loading [J]. Proceedings of the Physical Society: Section B, 1949, 62(11): 676–700. DOI: 10.1088/0370-1301/62/11/302.
|
[47] |
TAYLOR G I. The use of flat-ended projectiles for determining dynamic yield stress: Ⅰ. theoretical considerations [J]. Proceedings of the Royal Society A: Mathematical and Physical Sciences, 1948, 194(1038): 289–299. DOI: 10.1098/rspa.1948.0081.
|
[48] |
EAKINS D E, THADHANI N N. The shock-densification behavior of three distinct Ni+Al powder mixtures [J]. Applied Physics Letters, 2008, 92(11): 111903. DOI: 10.1063/1.2896653.
|
[49] |
AGHAYAN S, BIELER S, WEINBERG K. Determination of the high-strain rate elastic modulus of printing resins using two different split Hopkinson pressure bars [J]. Mechanics of Time-Dependent Materials, 2022, 26(4): 761–773. DOI: 10.1007/s11043-021-09511-2.
|
[50] |
徐涛, 何源, 焦俊杰, 等. 爆炸加载Al/Ni活性材料的准静态力学行为 [J]. 兵器装备工程学报, 2021, 42(7): 258–262. DOI: 10.11809/bqzbgcxb2021.07.044.
XU T, HE Y, JIAO J J, et al. Quasi-static mechanical behavior of Al/Ni active material after explosive loading [J]. Journal of Ordnance Equipment Engineering, 2021, 42(7): 258–262. DOI: 10.11809/bqzbgcxb2021.07.044.
|
[51] |
王比, 安二峰, 陈鹏万, 等. 爆炸烧结制备W-Al含能结构材料及其准静态压缩特性研究 [J]. 高压物理学报, 2019, 33(6): 063401. DOI: 10.11858/gywlxb.20190753.
WANG B, AN E F, CHEN P W, et al. Fabrication of W-Al energetic structural materials by explosive consolidation and investigation of its quasi-static compression properties [J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 063401. DOI: 10.11858/gywlxb.20190753.
|
[52] |
WEI C T, VITALI E, JIANG F, et al. Quasi-static and dynamic response of explosively consolidated metal-aluminum powder mixtures [J]. Acta Materialia, 2012, 60(3): 1418–1432. DOI: 10.1016/j.actamat.2011.10.027.
|
[53] |
REN K R, CHEN R. LIN Y L, et al. Probing the impact energy release behavior of Al/Ni-based reactive metals with experimental and numerical methods [J]. Metals, 2019, 9(5): 499. DOI: 10.3390/met9050499.
|
[54] |
曹召勋, 王军, 徐永东, 等. Al-Ni活性金属材料力学性能及其释能行为研究 [J]. 兵器材料科学与工程, 2018, 41(5): 90–96. DOI: 10.14024/j.cnki.1004-244x.20180828.005.
CAO Z X, WANG J, XU Y D, et al. Mechanical properties and impact energy release behavior of Al-Ni reactive metallic materials [J]. Ordnance Material Science and Engineering, 2018, 41(5): 90–96. DOI: 10.14024/j.cnki.1004-244x.20180828.005.
|
[55] |
丁青云, 骆心怡, 陶杰, 等. 原始层厚比对Ni/Al多层含能结构材料放热性能及力学性能的影响 [J]. 材料工程, 2020, 48(12): 156–162. DOI: 10.11868/j.issn.1001-4381.2019.000954.
DING Q Y, LUO X Y, TAO J, et al. Effects of original layer thickness ratio on exothermic and mechanical properties of Ni/Al multilayered energetic structural composites [J]. Journal of Materials Engineering, 2020, 48(12): 156–162. DOI: 10.11868/j.issn.1001-4381.2019.000954.
|
[56] |
DUNBAR E, THADHANI N N, GRAHAM R A. High-pressure shock activation and mixing of nickel-aluminium powder mixtures [J]. Journal of Materials Science, 1993, 28(11): 2903–2914. DOI: 10.1007/bf00354693.
|
[57] |
REN H L, LIU X J, NING J G. Microstructure and mechanical properties of W-Zr reactive materials [J]. Materials Science and Engineering: A, 2016, 660: 205–212. DOI: 10.1016/j.msea.2016.02.009.
|
[58] |
刘晓俊, 任会兰, 宁建国. 不同配比W/Zr活性材料冲击反应实验研究 [J]. 材料工程, 2017, 45(4): 77–83. DOI: 10.11868/j.issn.1001-4381.2016.001212.
LIU X J, REN H L, NING J G. Experimental study on impact response of W/Zr reactive materials with different proportions [J]. Journal of Materials Engineering, 2017, 45(4): 77–83. DOI: 10.11868/j.issn.1001-4381.2016.001212.
|
[59] |
刘晓俊, 任会兰, 宁建国. Zr-W多功能含能结构材料的制备及动态压缩特性 [J]. 复合材料学报, 2016, 33(10): 2297–2303. DOI: 10.13801/j.cnki.fhclxb.20160315.001.
LIU X J, REN H L, NING J G. Preparation and dynamic compression properties of Zr-W multifunctional energetic structural material [J]. Acta Materiae Compositae Sinica, 2016, 33(10): 2297–2303. DOI: 10.13801/j.cnki.fhclxb.20160315.001.
|
[60] |
宋超慧, 任会兰, 李尉, 等. 不同W含量Al/W活性材料的冲击压缩特性 [J]. 高压物理学报, 2021, 35(6): 064106. DOI: 10.11858/gywlxb.20210738.
SONG C H, REN H L, LI W, et al. Impact compression characteristics of Al/W active materials with different W additions [J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064106. DOI: 10.11858/gywlxb.20210738.
|
[61] |
ZHANG X F, SHI A S, QIAO L, et al. Experimental study on impact-initiated characters of multifunctional energetic structural materials [J]. Journal of Applied Physics, 2013, 113(8): 083508. DOI: 10.1063/1.4793281.
|
[62] |
张将, 张先锋, 范秉源, 等. 钨锆合金的动态力学特性研究 [J]. 兵器材料科学与工程, 2013, 36(1): 3–6. DOI: 10.14024/j.cnki.1004-244x.2013.01.020.
ZHANG J, ZHANG X F, FAN B Y, et al. Dynamic mechanical properties of W-Zr alloy [J]. Ordnance Material Science and Engineering, 2013, 36(1): 3–6. DOI: 10.14024/j.cnki.1004-244x.2013.01.020.
|
[63] |
陈元建, 陈进, 王军, 等. Al-Ni-W活性材料动态力学行为及其释能特性 [J]. 兵器材料科学与工程, 2018, 41(4): 71–75. DOI: 10.14024/j.cnki.1004-244x.20180615.002.
CHEN Y J, CHEN J, WANG J, et al. Dynamic mechanical behavior and energy release characteristics of Al-Ni-W reactive material [J]. Ordnance Material Science and Engineering, 2018, 41(4): 71–75. DOI: 10.14024/j.cnki.1004-244x.20180615.002.
|
[64] |
陈进, 曹召勋, 郭双锋, 等. Al-NI-W活性材料组织性能及毁伤效应研究 [J]. 兵器材料科学与工程, 2020, 43(4): 29–35. DOI: 10.14024/j.cnki.1004-244x.20200609.002.
CHEN J, CAO Z X, GUO S F, et al. The structure properties and damage effects of Al-Ni-W reactive material [J]. Ordnance Material Science and Engineering, 2020, 43(4): 29–35. DOI: 10.14024/j.cnki.1004-244x.20200609.002.
|
[65] |
CHEN J, CHEN Y J, LI X, et al. Metallic reactive materials application in fragmentation warhead [J]. Journal of Physics: Conference Series, 2020, 1507(6): 062004. DOI: 10.1088/1742-6596/1507/6/062004.
|
[66] |
熊玮, 张先锋, 陈亚旭, 等. 冷轧成型Al/Ni多层复合材料力学行为与冲击释能特性研究 [J]. 爆炸与冲击, 2019, 39(5): 055301. DOI: 10.11883/bzycj-2017-0451.
XIONG W, ZHANG X F, CHEN Y X, et al. Mechanical properties and shock-induced chemical reaction behaviors of cold-rolled Al/Ni multi-layered composites [J]. Explosion and Shock Waves, 2019, 39(5): 055301. DOI: 10.11883/bzycj-2017-0451.
|
[67] |
耿铁强, 金光, 朱正旺, 等. Ni-Al含能结构材料的制备及性能 [J]. 金属热处理, 2019, 44(7): 93–96. DOI: 10.13251/j.issn.0254-6051.2019.07.020.
GENG T Q, JIN G, ZHU Z W, et al. Preparation and properties of Ni-Al energetic structural material [J]. Heat Treatment of Metals, 2019, 44(7): 93–96. DOI: 10.13251/j.issn.0254-6051.2019.07.020.
|
[68] |
GUO L F, ZHANG Z M, LI B C, et al. Modeling the constitutive relationship of powder metallurgy Al-W alloy at elevated temperature [J]. Materials and Design, 2014, 64: 667–674. DOI: 10.1016/j.matdes.2014.08.031.
|
[69] |
NESTERENKO V F, CHIU P H, BRAITHWAITE C H, et al. Dynamic behavior of particulate/porous energetic materials [J]. AIP Conference Proceedings, 2012, 1426(1): 533–538. DOI: 10.1063/1.3686334.
|
[70] |
DOLGOBORODOV A Y, MAKHOV M N, KOLBANEV I V, et al. Detonation in an aluminum-Teflon mixture [J]. Journal of Experimental and Theoretical Physics Letters, 2005, 81(7): 311–314. DOI: 10.1134/1.1944069.
|
[71] |
KELLY S C, THADHANI N N. Shock compression response of highly reactive Ni+Al multilayered thin foils [J]. Journal of Applied Physics, 2016, 119(9): 095903. DOI: 10.1063/1.4942931.
|
[72] |
李强, 姜春兰, 杜烨. 富铝Fe-Al粉末的热压烧结工艺及组织研究 [J]. 功能材料, 2014, 18(45): 20138–20141. DOI: 10.3969/j.issn.1001-9731.2014.20.029.
LI Q, JIANG C L, DU Y. Investigation on preparative technology and microstructure of Fe-Al mixture with rich aluminum by hot-pressing sintering [J]. Journal of Functional Materials, 2014, 18(45): 20138–20141. DOI: 10.3969/j.issn.1001-9731.2014.20.029.
|
[73] |
王肖义, 王扬卫, 王在成, 等. 成分及烧结温度对Fe-Al反应材料反应热的影响 [J]. 稀有金属材料与工程, 2017, 46(10): 3043–3047.
WANG X Y, WANG Y W, WANG Z C, et al. Effect of composition and sintering temperature on reaction heat of Fe-Al reactive material [J]. Rare Metal Materials and Engineering, 2017, 46(10): 3043–3047.
|
[74] |
刘青, 廖雪松, 张峰浩, 等. 冷喷涂Ni-Al-W活性复合材料反应性能研究 [J]. 兵器装备工程学报, 2019, 40(7): 225–228. DOI: 10.11809/bqzbgcxb2019.07.046.
LIU Q, LIAO X S, ZHANG F H, et al. Study on reaction performance of Ni-Al-W active composites consolidated by cold spraying [J]. Journal of Ordnance Equipment Engineering, 2019, 40(7): 225–228. DOI: 10.11809/bqzbgcxb2019.07.046.
|
[75] |
尚宏春, 武鹏飞, 娄燕山. SPRC340S金属在不同应变率下的本构模型评估 [J]. 精密成形工程, 2020, 12(6): 44–48. DOI: 10.3969/j.issn.1674-6457.2020.06.006.
SHANG H C, WU P F, LOU Y S. Constitutive model evaluation of SPRC340S metal at different strain rates [J]. Journal of Netshape Forming Engineering, 2020, 12(6): 44–48. DOI: 10.3969/j.issn.1674-6457.2020.06.006.
|
[76] |
GAO F, ZHANG X F, AHMAD S, et al. Dynamic behavior and constitutive model for two tantalum-tungsten alloys under elevated strain rates [J]. Rare Metal Materials and Engineering, 2017, 46(10): 2753–2762. DOI: 10.1016/s1875-5372(18)30002-x.
|
[77] |
史安顺, 张先锋, 乔良, 等. 多功能含能结构材料冲击压缩特性的理论计算 [J]. 爆炸与冲击, 2013, 33(2): 148–155. DOI: 10.11883/1001-1455(2013)02-0148-08.
SHI A S, ZHANG X F, QIAO L, et al. Theoretical calculation on shock compression characteristics of multifunctional energetic structural materials [J]. Explosion and Shock Waves, 2013, 33(2): 148–155. DOI: 10.11883/1001-1455(2013)02-0148-08.
|
[78] |
罗普光, 毛亮, 魏晨杨, 等. 锆基非晶活性材料动态力学性能及本构关系 [J]. 含能材料, 2021, 29(12): 1176–1181. DOI: 10.11943/CJEM2021068.
LUO P G, MAO L, WEI C Y, et al. Dynamic mechanical properties and constitutive relations of Zr-based amorphous reactive material [J]. Chinese Journal of Energetic Materials, 2021, 29(12): 1176–1181. DOI: 10.11943/CJEM2021068.
|
[79] |
WILLIAMSON R L. Parametric studies of dynamic powder consolidation using a particle-level numerical model [J]. Journal of Applied Physics, 1990, 68(3): 1287–1296. DOI: 10.1063/1.346730.
|
[80] |
BENSON D J. The calculation of the shock velocity-particle velocity relationship for a copper powder by direct numerical simulation [J]. Wave Motion, 1995, 21(1): 85–99. DOI: 10.1016/0165-2125(94)00044-6.
|
[81] |
BENSON D J, CONLEY P. Eulerian finite-element simulations of experimentally acquired HMX microstructures [J]. Modelling and Simulation in Materials Science and Engineering, 1999, 7(3): 333–354. DOI: 10.1088/0965-0393/7/3/304.
|
[82] |
AUSTIN R A. Modeling shock wave propagation in discrete Ni/Al powder mixtures [D]. Atlanta: Georgia Institute of Technology, 2010: 1–20.
|
[83] |
AUSTIN R A, MCDOWELL D L, BENSON D J. Numerical simulation of shock wave propagation in spatially-resolved particle systems [J]. Modelling and Simulation in Materials Science and Engineering, 2006, 14(4): 537–561. DOI: 10.1088/0965-0393/14/4/001.
|
[84] |
AUSTIN R A, MCDOWELL D L, BENSON D J. Mesoscale simulation of shock wave propagation in discrete Ni/Al powder mixtures [J]. Journal of Applied Physics, 2012, 111(12): 123511. DOI: 10.1063/1.4729304.
|
[85] |
乔良, 张先锋, 何勇, 等. 颗粒金属材料冲击压缩细观力学仿真模型生成方法 [J]. 南京理工大学学报, 2013, 37(2): 219–225. DOI: 10.14177/j.cnki.32-1397n.2013.02.004.
QIAO L, ZHANG X F, HE Y, et al. Study on generation of shock compression meso-mechanic simulation model for particle metal materials [J]. Journal of Nanjing University of Science and Technology, 2013, 37(2): 219–225. DOI: 10.14177/j.cnki.32-1397n.2013.02.004.
|
[86] |
QIAO L, ZHANG X F, HE Y, et al. Mesoscale simulation on the shock compression behaviour of Al-W-Binder granular metal mixtures [J]. Materials and Design, 2013, 47: 341–349. DOI: 10.1016/j.matdes.2012.12.013.
|
[87] |
EAKINS D E, THADHANI N N. Mesoscale simulation of the configuration-dependent shock-compression response of Ni+Al powder mixtures [J]. Acta Materialia, 2008, 56(7): 1496–1510. DOI: 10.1016/j.actamat.2007.12.009.
|
[88] |
EAKINS D, THADHANI N N. Discrete particle simulation of shock wave propagation in a binary Ni+Al powder mixture [J]. Journal of Applied Physics, 2007, 101(4): 043508. DOI: 10.1063/1.2431682.
|
[89] |
REEVES R V, MUKASYAN A S, SON S F. Thermal and impact reaction initiation in Ni/Al heterogeneous reactive systems [J]. The Journal of Physical Chemistry C, 2010, 114(35): 14772–14780. DOI: 10.1021/jp104686z.
|
[90] |
AYDELOTTE B B, THADHANI N N. Mechanistic aspects of impact initiated reactions in explosively consolidated metal+aluminum powder mixtures [J]. Materials Science and Engineering: A, 2013, 570(15): 164–171. DOI: 10.1016/j.msea.2013.01.054.
|
[91] |
熊玮, 张先锋, 陈海华, 等. Al/Ni类含能结构材料冲击压缩特性细观模拟 [J]. 含能材料, 2020, 28(10): 984–994. DOI: 10.11943/CJEM2020171.
XIONG W, ZHANG X F, CHEN H H, et al. Mesoscale modeling on dynamic behavior of Al/Ni energetic structural materials under shock compression [J]. Chinese Journal of Energetic Materials, 2020, 28(10): 984–994. DOI: 10.11943/CJEM2020171.
|