Citation: | ZOU Guangping, LIANG Zheng, WU Songyang, CHANG Zhongliang. Numerical analysis of dynamic response of ceramic particle reinforced polyurethane composites under explosive loading[J]. Explosion And Shock Waves, 2023, 43(7): 073104. doi: 10.11883/bzycj-2022-0254 |
[1] |
TOUNICI A, JM MARTIN. Influence of the surface chemistry of graphene oxide on the structure-property relationship of waterborne poly(urethane urea) adhesive [J]. Materials, 2021, 14(16): 350–379. DOI: 10.3390/ma14164377.
|
[2] |
DUANG Z, HE H, LIANG W, et al. Tensile, quasistatic and dynamic fracture properties of nano-Al2O3 -modified epoxy resin [J]. Materials, 2018, 11(6): 905–917. DOI: 10.3390/ma11060905.
|
[3] |
方奕欣, 陈蔚, 蒋震宇, 等. 碳纤维和SiO2纳米颗粒增强环氧树脂复合材料的压缩性能 [J]. 复合材料学报, 2019, 36(6): 1343–1352. DOI: 10.13801/j.cnki.fhclxb.20180907.001.
FANG Y X, CHENG W, JIANG Z Y, et al. Compressive properties of epoxy resin composites reinforced with carbon fiber and SiO2 nanoparticles [J]. Journal of Composite Materials, 2019, 36(6): 1343–1352. DOI: 10.13801/j.cnki.fhclxb.20180907.001.
|
[4] |
EVORA V, SHUKLA A. Fabrication, characterization, and dynamic behavior of polyester/TiO2 nanocomposites [J]. Materials Science & Engineering: A, 2003, 361(1): 358–366. DOI: 10.1016/S0921-5093(03)00536-7.
|
[5] |
钟发春, 刘忠平, 朱珈庆, 等. 纳米微球增强聚氨酯泡沫的制备及抗冲击应用 [J]. 包装工程, 2020, 41(1): 167–172. DOI: 10.19554/j.cnki.1001-3563.2020.01.026.
ZHONG F C, LIU Z P, ZHU J Q, et al. Preparation and impact resistance of polyurethane foam reinforced by nano microspheres [J]. Packaging Engineering, 2020, 41(1): 167–172. DOI: 10.19554/j.cnki.1001-3563.2020.01.026.
|
[6] |
胡勤, 王进华, 吕娟, 等. 6061铝合金约束Al2O3陶瓷球复合材料抗弹性能和抗弹机理研究 [J]. 振动与冲击, 2018, 37(18): 165–169, 183. DOI: 10.13465/j.cnki.jvs.2018.18.024.
HU Q, WANG J H, LYU J et al. Study on ballistic properties and mechanism of 6061 aluminum alloy confined Al2O3 ceramic ball composites [J]. Vibration and Shock, 2018, 37(18): 165–169, 183. DOI: 10.13465/j.cnki.jvs.2018.18.024.
|
[7] |
郑伟峰, 周来水, 袁铁军, 等. 颗粒Al2O3增强环氧树脂复合材料的微波固化动力学及性能 [J]. 高分子材料科学与工程, 2017, 33(10): 65–71. DOI: 10.16865/j.cnki.1000-7555.2017.10.012.
ZHENG W F, ZHOU L S, YUAN T J, et al. Microwave curing kinetics and properties of particle Al2O3 reinforced epoxy resin composites [J]. Polymer materials science and Engineering, 2017, 33(10): 65–71. DOI: 10.16865/j.cnki.1000-7555.2017.10.012.
|
[8] |
邹广平, 吴松阳, 徐舒博, 等. 石墨烯/陶瓷颗粒增强聚氨酯基复合材料动态压缩性能 [J]. 兵工学报, 2023, 44(3): 728–735. DOI: 10.12382/bgxb.2021.0777.
ZHOU G P , WU S Y , XU S B, et al. Dynamic compression properties of graphene/ceramic particle reinforced polyurethane matrix composites [J]. Acta Armamentarii, 2023, 44(3): 728–735. DOI: 10.12382/bgxb.2021.0777.
|
[9] |
ZHOU R, LU D H, JIANG Y H, et al. Mechanical properties and erosion wear resistance of polyurethane matrix composites [J]. Wear, 2005, 259(1): 676–683. DOI: 10.1016/j.wear.2005.02.118.
|
[10] |
OUYANG X. Effects of modified Al2O3-decorated ionic liquid on the mechanical properties and impact resistance of a polyurethane elastomer [J]. Materials, 2021(16): 75–83. DOI: 10.3390/ma14164712.
|
[11] |
ZHU F, ZHAO L. A numerical simulation of the blast impact of square metallic sandwich panels [J]. International Journal of Impact Engineering, 2009, 36(5): 687–699. DOI: 10.1016/j.ijimpeng.2008.12.004.
|
[12] |
LARCHER M . Simulation of the effects of an air blast wave[R]. Ispra, Italy: Joint Research Centre, 2007.
|
[13] |
PAWAR J M , PATNAIK A , BISWAS S K, et al. Comparison of ballistic performance of Al2O3 and AlN ceramics [J]. International Journal of Impact Engineering, 2016, 98: 42–51. DOI: 10.1016/j.ijimpeng.2016.08.002.
|
[14] |
FOX J W, GOURLBOURNE N C. On the dynamic electromechanical loading of dielectric elastomer membranes [J]. Journal of the Mechanics & Physics of Solids, 2008, 56(8): 2669–2686. DOI: 10.1016/j.jmps.2008.03.007.
|
[15] |
RIVLIN R S. Large elastic deformations of isotropic materials: Ⅳ: further developments of the general theory [J]. Philosophical Transactions of the Royal Society of London: Mathematical and Physical Sciences, 1948, 241(835): 379–397. DOI: 10.2307/91391.
|
[16] |
ZOU G P, YANG Y, WU S Y, et al. Study on the penetration resistance of a honeycomb composite structure coated with polyurethane elastomer [J]. Thin-Walled Structures, 2023, 187(6): 110747. DOI: 10.1016/j.tws.2023.110747.
|
[17] |
HENRYCH J, MAIOR R. The dynamics of explosion and its use [M]. New York: Elsevier Scientific Publishing Company, 1979: 286–293.
|
[1] | LI Ming, WANG Kehui, ZOU Huihui, DUAN Jian, GU Renhong, DAI Xianghui, YANG Hui. Crater morphology of a projectile penetrating a thick concrete target[J]. Explosion And Shock Waves, 2022, 42(8): 083302. doi: 10.11883/bzycj-2021-0294 |
[2] | WANG Xiaodong, YU Yilei, JIANG Zhaoxiu, MA Minghui, GAO Guangfa. Dynamic fragmentation and failure of the hard core of a 12.7 mm API projectile against SiC/6061T6Al composite armor with various impact velocities[J]. Explosion And Shock Waves, 2022, 42(2): 023303. doi: 10.11883/bzycj-2021-0181 |
[3] | WANG Xiaodong, WANG Jiangbo, XU Lizhi, DU Zhonghua, GAO Guangfa. Experimental study on penetration of non-circular cross-section long-rod projectiles into semi-infinite metal target[J]. Explosion And Shock Waves, 2021, 41(3): 031403. doi: 10.11883/bzycj-2020-0335 |
[4] | LIN Kunfu, ZHANG Xianfeng, CHEN Haihua, XIONG Wei, LIU Chuang, ZHANG Quanxiao. Penetration behaviors of Hf-based amorphous alloy jacketed rods[J]. Explosion And Shock Waves, 2021, 41(2): 023301. doi: 10.11883/bzycj-2020-0181 |
[5] | WANG Jie, WU Haijun, ZHOU Jiequn, SHI Xiaohai, LI Jinzhu, PI Aiguo, HUANG Fenglei. Experiment research and crater analysis of long rodhypervelocity penetration into concrete[J]. Explosion And Shock Waves, 2020, 40(9): 093301. doi: 10.11883/bzycj-2019-0439 |
[6] | WU Yishun, CHEN Xiaowei. A numerical simulation method for long rods penetrating into ceramic targets[J]. Explosion And Shock Waves, 2020, 40(5): 053301. doi: 10.11883/bzycj-2019-0291 |
[7] | MA Liying, LI Xiangdong, ZHOU Lanwei, LAN Xiaoying, GONG Xiaoze, YAO Zhijun. Study on wall damage of vessel in high-speed fragment impact liquid-filled vessel[J]. Explosion And Shock Waves, 2019, 39(2): 023302. doi: 10.11883/bzycj-2018-0009 |
[8] | Tan Mengting, Zhang Xianfeng, Ge Xiankun, Liu Chuang, Xiong Wei. Theoretical model of interface defeat/penetration transition velocity of ceramic armor impacted by long-rod projectile[J]. Explosion And Shock Waves, 2017, 37(6): 1093-1100. doi: 10.11883/1001-1455(2017)06-1093-08 |
[9] | Zhong Qiang, Hou Hailiang, Zhu Xi, Li Dian. Numerical analysis of penetration resistance of ceramic/fluid cabin composite structure[J]. Explosion And Shock Waves, 2017, 37(3): 510-519. doi: 10.11883/1001-1455(2017)03-0510-10 |
[10] | Li Ruiyu, Sun Yuxin, Zhou Ling, Sun Qiran, Zhao Yayun, Feng Jiangtuo. Influence of heat transfer on long-rod projectiles penetrating into ceramic targets[J]. Explosion And Shock Waves, 2017, 37(2): 332-338. doi: 10.11883/1001-1455(2017)02-0332-07 |
[11] | Wang Qifan, Shi Shaoqing, Wang Zheng, Sun Jianhu, Chu Zhaojun. Experimental study on penetration-resistance characteristics of honeycomb shelter[J]. Explosion And Shock Waves, 2016, 36(2): 253-258. doi: 10.11883/1001-1455(2016)02-0253-06 |
[12] | Zhang Jie, Su Shao-qing, Zheng Yu, Wang Xiao-jun. Application of modified SPH method to numerical simulation of ceramic spallation[J]. Explosion And Shock Waves, 2013, 33(4): 401-407. doi: 10.11883/1001-1455(2013)04-0401-07 |
[13] | Xiong Liang-ping, Huang Dao-ye, Wang Feng-ying. Protection effectiveness of a new explosive reactive armor against penetration of long-rod projectiles with small yaw angles[J]. Explosion And Shock Waves, 2013, 33(1): 108-112. doi: 10.11883/1001-1455(2013)01-0108-05 |
[14] | WANG Jin-tao, YU Wen-li, WANG Tao, LUO Yong-feng, WANG Shao-long. Smoothedparticlehydrodynamicsalgorithmappliedinnumerical simulationoflayeredmetaltargetsimpactedbylong-rodprojectile[J]. Explosion And Shock Waves, 2011, 31(5): 533-569. doi: 10.11883/1001-1455(2011)05-0533-07 |
[15] | LI Ji-cheng, CHEN Xiao-wei. Theoreticalanalysisontheinterfacedefeatofalongrodpenetration[J]. Explosion And Shock Waves, 2011, 31(2): 141-147. doi: 10.11883/1001-1455(2011)02-0141-07 |
[16] | HE Xiang, XU Xiang-yun, SUN Gui-juan, SHEN Jun, YANG Jian-chao, JIN Dong-liang. Experimentalinvestigationonprojectileshigh-velocitypenetration intoconcretetarget[J]. Explosion And Shock Waves, 2010, 30(1): 1-6. doi: 10.11883/1001-1455(2010)01-0001-06 |
[17] | JIANG Dong, LI Yong-chi, YU Shao-juan, DENG Shi-chun. PenetrationofconfinedAD95ceramiccompositetargets bytungstenlongrods[J]. Explosion And Shock Waves, 2010, 30(1): 91-95. doi: 10.11883/1001-1455(2010)01-0091-05 |
[18] | ZHANG Xian-feng, LI Yong-chi. Constraining and toughening effects on anti-penetration properties of alumina ceramic targets to shaped charge jets[J]. Explosion And Shock Waves, 2009, 29(2): 149-154. doi: 10.11883/1001-1455(2009)02-0149-06 |
[19] | LIANG Long-he, WANG Zheng, CAO Ju-zhen. Damaging effect of concrete by penetration and explosion of a long-rod projectile[J]. Explosion And Shock Waves, 2008, 28(5): 415-420. doi: 10.11883/1001-1455(2008)05-0415-06 |
[20] | CHEN Xiao-wei, ZHANG Fang-ju, YANG Shi-quan, XIE Ruo-ze, GAO Hai-ying, XU Ai-ming, JIN Jian-ming, QU Ming. Mechanics of structural design of EPW(Ⅲ): Investigations on the reduced-scale tests[J]. Explosion And Shock Waves, 2006, 26(2): 105-214. doi: 10.11883/1001-1455(2006)02-0105-10 |