Citation: | ZHANG Jingfei, JIA Haobo, REN Kerong, QING Hua, GUO Pan, DU Xiaowei, CHEN Rong, LU Fangyun. Damage of hydrodynamic ram effect to riveted fuel tanks[J]. Explosion And Shock Waves, 2023, 43(7): 073301. doi: 10.11883/bzycj-2022-0275 |
[1] |
纪杨子燚, 李向东, 周兰伟, 等. 高速侵彻体撞击充液容器形成的液压水锤效应研究进展 [J]. 振动与冲击, 2019, 38(19): 242–252. DOI: 10.13465/j.cnki.jvs.2019.19.036.
JI Y Z Y, LI X D, ZHOU L W, et al. Review of study on hydrodynamic ram effect generated due to high-velocity penetrator impacting fluid-filled container [J]. Journal of Vibration and Shock, 2019, 38(19): 242–252. DOI: 10.13465/j.cnki.jvs.2019.19.036.
|
[2] |
ADDESSIO F L, SCHRAAD M W, LEWIS M W. Physics-based damage predictions for simulating testing and evaluation (T and E) experiments: LA-UR-99-484 [R]. New Mexico: Los Alamos National Laboratory, 1999.
|
[3] |
BALL R E. Structural response of fluid containing tanks to penetrating projectiles (Hydraulic Ram): a comparison of experimental and analytical results: NPS-57BP76051 [R]. Monterey: Naval Postgraduate School, 1976.
|
[4] |
DISIMILE P J, SWANSON L A, TOY N. The hydrodynamic ram pressure generated by spherical projectiles [J]. International Journal of Impact Engineering, 2009, 36(6): 821–829. DOI: 10.1016/j.ijimpeng.2008.12.009.
|
[5] |
VARAS D, ZAERA R, LÓPEZ-PUENTE J. Numerical modelling of the hydrodynamic ram phenomenon [J]. International Journal of Impact Engineering, 2009, 36(3): 363–374. DOI: 10.1016/j.ijimpeng.2008.07.020.
|
[6] |
REN P, ZHOU J Q, TIAN A L, et al. Experimental investigation on dynamic failure of water-filled vessel subjected to projectile impact [J]. International Journal of Impact Engineering, 2018, 117: 153–163. DOI: 10.1016/j.ijimpeng.2018.03.009.
|
[7] |
李营, 张玮, 杜志鹏, 等. 球形弹体打击作用下宽距水间隔铝板的动态响应特性 [J]. 振动与冲击, 2018, 37(1): 106–110. DOI: 10.13465/j.cnki.jvs.2018.01.017.
LI Y, ZHANG W, DU Z P, et al. Dynamic responses of wide interval water-spacing aluminum plates under sphere projectile impact [J]. Journal of Vibration and Shock, 2018, 37(1): 106–110. DOI: 10.13465/j.cnki.jvs.2018.01.017.
|
[8] |
陈安然, 李向东, 周兰伟, 等. 液压水锤效应引起液体喷溅特性及其影响因素试验研究 [J]. 国防科技大学学报, 2021, 43(5): 144–152. DOI: 10.11887/j.cn.202105017.
CHEN A R, LI X D, ZHOU L W, et al. Experimental study on the characteristics and influencing factors of liquid spurt caused by hydrodynamic ram [J]. Journal of National University of Defense Technology, 2021, 43(5): 144–152. DOI: 10.11887/j.cn.202105017.
|
[9] |
李亚智, 陈钢. 充液箱体受弹丸撞击下动态响应的数值模拟 [J]. 机械强度, 2007, 29(1): 143–147. DOI: 10.3321/j.issn:1001-9669.2007.01.029.
LI Y Z, CHEN G. Numerical simulation of liquid-filled tank response to projectile impact [J]. Journal of Mechanical Strength, 2007, 29(1): 143–147. DOI: 10.3321/j.issn:1001-9669.2007.01.029.
|
[10] |
VARAS D, ZAERA R, LÓPEZ-PUENTE J. Numerical modelling of partially filled aircraft fuel tanks submitted to hydrodynamic ram [J]. Aerospace Science and Technology, 2012, 16(1): 19–28. DOI: 10.1016/j.ast.2011.02.003.
|
[11] |
MANSOORI H, ZAREI H. FSI simulation of hydrodynamic ram event using LS-Dyna software [J]. Thin-Walled Structures, 2019, 134: 310–318. DOI: 10.1016/j.tws.2018.10.002.
|
[12] |
蓝肖颖, 李向东, 周兰伟, 等. 双破片撞击充液容器时液体内压力分布研究 [J]. 振动与冲击, 2019, 38(19): 191–197. DOI: 10.13465/j.cnki.jvs.2019.19.029.
LAN X Y, LI X D, ZHOU L W, et al. Pressure distribution inside liquid during a liquid-filled vessel impacted by double-fragment [J]. Journal of Vibration and Shock, 2019, 38(19): 191–197. DOI: 10.13465/j.cnki.jvs.2019.19.029.
|
[13] |
韩璐, 韩庆, 杨爽. 飞机油箱水锤效应影响因素及其影响程度研究 [J]. 航空工程进展, 2018, 9(4): 489–500. DOI: 10.16615/j.cnki.1674-8190.2018.04.005.
HAN L, HAN Q, YANG S. Simulation analysis of hydrodynamic ram factors and effects in aircraft fuel tank [J]. Advances in Aeronautical Science and Engineering, 2018, 9(4): 489–500. DOI: 10.16615/j.cnki.1674-8190.2018.04.005.
|
[14] |
韩璐, 韩庆, 杨爽. 多破片高速冲击下飞机油箱水锤效应数值模拟 [J]. 爆炸与冲击, 2018, 38(3): 473–484. DOI: 10.11883/bzycj-2017-0230.
HAN L, HAN Q, YANG S. Simulation analysis of hydrodynamic ram in an aircraft fuel tank subjected to high-velocity multi-fragment impact [J]. Explosion and Shock Waves, 2018, 38(3): 473–484. DOI: 10.11883/bzycj-2017-0230.
|
[15] |
陈钢. 高速弹丸冲击下油箱动态响应的数值模拟 [D]. 西安: 西北工业大学, 2005: 3–20. DOI: 10.7666/d.y843974.
CHEN G. Numerical simulation of fuel tankresponse to projectile impact [D]. Xi’an: Northwestern Polytechnical University, 2005: 3–20. DOI: 10.7666/d.y843974.
|
[16] |
BALL R E. The fundamentals of aircraft combat survivability: analysis and design [M]. 2nd ed. Reston: AIAA Education, 2003: 667–668. DOI: 10.2514/4.862519.
|
[17] |
HULL B T, SEDALOR T, MIFSUD T. Utilization of hydrodynamic ram simulator to determine the dynamic strength thresholds of structural joints [C]//AIAA Scitech 2019 Forum. San Diego, California: American Institute of Aeronautics and Astronautics, 2019. DOI: 10.2514/6.2019-0524.
|
[18] |
崔新男, 汪旭光, 王尹军, 等. 爆炸加载下混凝土表面的裂纹扩展 [J]. 爆炸与冲击, 2020, 40(5): 052203. DOI: 10.11883/bzycj-2019-0364.
CUI X N, WANG X G, WANG Y J, et al. External crack propagation of concrete surface under explosive loading [J]. Explosion and Shock Waves, 2020, 40(5): 052203. DOI: 10.11883/bzycj-2019-0364.
|
[19] |
LIDÉN E, HELTE A. Fracture mechanics of long rod projectiles subjected to oblique moving plates [C]// Proceedings of the 26th International Symposium on Ballistics, 2011: 1736–1747.
|
[20] |
BUYUK M, KURTARAN H, MARZOUGUI D, et al. Automated design of threats and shields under hypervelocity impacts by using successive optimization methodology [J]. International Journal of Impact Engineering, 2008, 35(12): 1449–1458. DOI: 10.1016/j.ijimpeng.2008.07.057.
|
[21] |
NAYAK S K, SINGH A K, BELEGUNDU A D, et al. Process for design optimization of honeycomb core sandwich panels for blast load mitigation [J]. Structural and Multidisciplinary Optimization, 2013, 47(5): 749–763. DOI: 10.1007/s00158-012-0845-x.
|
[22] |
余海燕, 王友. 5052铝合金冲压成形过程中韧性断裂的仿真研究 [J]. 中国有色金属学报, 2015, 25(11): 2975–2981. DOI: 10.19476/j.ysxb.1004.0609.2015.11.003.
YU H Y, WANG Y. Bulging simulation of ductile fracture of 5052 aluminum alloy [J]. The Chinese Journal of Nonferrous Metals, 2015, 25(11): 2975–2981. DOI: 10.19476/j.ysxb.1004.0609.2015.11.003.
|
[23] |
马丽英, 李向东, 周兰伟, 等. 高速破片撞击充不同介质液体容器的数值计算及试验研究 [J]. 振动与冲击, 2018, 37(24): 115–122. DOI: 10.13465/j.cnki.jvs.2018.24.018.
MA L Y, LI X D, ZHOU L W, et al. Numerical simulation and experimental study on high-speed fragment impact filling different liquid containers [J]. Journal of Vibration and Shock, 2018, 37(24): 115–122. DOI: 10.13465/j.cnki.jvs.2018.24.018.
|
[24] |
MEDINA S F, HERNANDEZ C A. General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels [J]. Acta Materialia, 1996, 44(1): 137–148. DOI: 10.1016/1359-6454(95)00151-0.
|
[25] |
纪德洋, 金锋, 冬雷, 等. 基于皮尔逊相关系数的光伏电站数据修复 [J]. 中国电机工程学报, 2022, 42(4): 1514–1522. DOI: 10.13334/j.0258-8013.
JI D Y, JIN F, DONG L, et al. Data repairing of photovoltaic power plant based on pearson correlation coefficient [J]. Proceedings of the CSEE, 2022, 42(4): 1514–1522. DOI: 10.13334/j.0258-8013.
|
[26] |
蓝肖颖. 双破片作用下液压水锤叠加效应研究 [D]. 南京: 南京理工大学, 2019: 54–56. DOI: 10.27241/d.cnki.gnjgu.2019.000834.
|
[27] |
CHOU P C, CHEN S. Hypervelocity impact of bumper-protected fuel tanks [J]. Journal of Spacecraft and Rockets, 1970, 7(12): 1412–1418. DOI: 10.2514/3.30183.
|