Volume 44 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
NIE Xiaodong, WU Xiangyun, LONG Zhilin, YI Zhi, JI Nan, GUO Ruiqi. Research on penetration depth of projectiles into ultra-high performance concrete targets[J]. Explosion And Shock Waves, 2024, 44(2): 023302. doi: 10.11883/bzycj-2022-0282
Citation: NIE Xiaodong, WU Xiangyun, LONG Zhilin, YI Zhi, JI Nan, GUO Ruiqi. Research on penetration depth of projectiles into ultra-high performance concrete targets[J]. Explosion And Shock Waves, 2024, 44(2): 023302. doi: 10.11883/bzycj-2022-0282

Research on penetration depth of projectiles into ultra-high performance concrete targets

doi: 10.11883/bzycj-2022-0282
  • Received Date: 2022-06-29
  • Rev Recd Date: 2023-02-24
  • Available Online: 2023-03-13
  • Publish Date: 2024-02-06
  • Aiming to evaluate the penetration resistance of the ultra high performance concrete (UHPC) target, both penetration tests and numerical simulations were carried out on UHPC targets. Firstly, the $\varnothing $35 mm gun was used to carry out a series of penetration tests on the C160 UHPC with striking velocities varying from 216 m/s to 345 m/s. The test results show that with the increase of projectile velocity, the penetration depth and crater diameter increase obviously. Besides, UHPC notably decreased the damage to targets caused by the projectile, efficiently reduced the penetration depth and regarding crater damage and crack propagation, which was superior to ordinary concrete in the performance against penetration. Then, 3D finite element models were established and the corresponding numerical simulations were carried out. In the process of numerical simulation, the key parameters of the RHT model for UHPC was determined. In order to verify the accuracy of the RHT material model, uniaxial compressive and split Hopkinson pressure bar (SHPB) testing results are used to validate 3D finite element material model. The numerical simulated results exhibited fair agreement with the test data, these observations demonstrated the applicability and validity of the calibrated RHT model. Finally, with the validated RHT material model, parametric studies were further conducted to explore the effect of uniaxial compressive strength of UHPC, projectile mass, projectile striking velocity, projectile diameter and projectile caliber-radius-head ratio on the final depth of penetration values of UHPC targets. Moreover, an empirical formula to predict the depth of penetration is derived according to the numerical simulated data, which can provide a reference for the design and evaluation of the UHPC protective structures against projectile penetrations.
  • loading
  • [1]
    葛涛, 潘越峰, 谭可可, 等. 活性粉末混凝土抗冲击性能研究 [J]. 岩石力学与工程学报, 2007, 26(S1): 3553–3557. DOI: 10.3321/j.issn:1000-6915.2007.z1.148.

    GE T, FAN Y F, TAN K K, et al. Study on resistance of reactive powder concrete to impact [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3553–3557. DOI: 10.3321/j.issn:1000-6915.2007.z1.148.
    [2]
    曹方良. 纳米材料对超高性能混凝土强度的影响研究 [D]. 长沙: 湖南大学, 2012: 1–4.

    CAO L F. Study on the effects of nano-materials on the strength of ultra high performance concrete [D]. Changsha: Hunan University, 2012: 1–4.
    [3]
    任亮, 何瑜, 王凯, 等. 基于SHPB的UHPC冲击试验径向惯性效应分析 [J]. 爆炸与冲击, 2019, 39(10): 104104. DOI: 10.11883/bzycj-2018-0335.

    REN L, HE Y, WANG K, et al. Radial inertia effect analysis of UHPC impact test based on SHPB [J]. Explosion and Shock Waves, 2019, 39(10): 104104. DOI: 10.11883/bzycj-2018-0335.
    [4]
    程月华, 吴昊, 谭可可, 等. 装甲钢/UHPC复合靶体抗侵彻性能试验与数值模拟研究 [J]. 爆炸与冲击, 2022, 42(5): 053302. DOI: 10.11883/bzycj-2021-0278.

    CHENG Y H, WU H, TAN K K, et al. Experimental and numerical studies on penetration resistance of armor steel/UHPC composite targets [J]. Explosion and Shock Waves, 2022, 42(5): 053302. DOI: 10.11883/bzycj-2021-0278.
    [5]
    TAI Y S. Flat ended projectile penetrating ultra-high strength concrete plate target [J]. Theoretical and Applied Fracture Mechanics, 2009, 51(2): 117–128. DOI: 10.1016/j.tafmec.2009.04.005.
    [6]
    WU H, FANG Q, GONG J, et al. Projectile impact resistance of corundum aggregated UHP-SFRC [J]. International Journal of Impact Engineering, 2015, 84: 38–53. DOI: 10.1016/j.ijimpeng.2015.05.007.
    [7]
    SOVJÁK R, VAVŘINÍK T, MÁCA P, et al. Experimental investigation of ultra-high performance fiber reinforced concrete slabs subjected to deformable projectile impact [J]. Procedia Engineering, 2013, 65: 120–125. DOI: 10.1016/j.proeng.2013.09.021.
    [8]
    张文华, 张云升, 陈振宇. 超高性能混凝土抗缩比钻地弹侵彻试验及数值仿真 [J]. 工程力学, 2018, 35(7): 167–175,186. DOI: 10.6052/j.issn.1000-4750.2017.03.0237.

    ZHANG W H, ZHANG Y S, CHEN Z Y. Penetration test and numerical simulation of ultral-high performance concrete with a scaled earth penetrator [J]. Engineering Mechanics, 2018, 35(7): 167–175,186. DOI: 10.6052/j.issn.1000-4750.2017.03.0237.
    [9]
    赖建中, 过旭佳, 朱耀勇. 超高性能混凝土抗侵彻及抗爆炸性能研究 [J]. 河北工业大学学报, 2014, 43(6): 50–53. DOI: 10.14081/j.cnki.hgdxb.2014.06.013.

    LAI J Z, GUO X J, ZHU Y Y. Properties of ultra-high performance concrete subjected to penetration and explosion [J]. Journal of Hebei University of Technology, 2014, 43(6): 50–53. DOI: 10.14081/j.cnki.hgdxb.2014.06.013.
    [10]
    ZHAI Y X, WU H, FANG Q. Impact resistance of armor steel/ceramic/UHPC layered composite targets against 30CrMnSiNi2A steel projectiles [J]. International Journal of Impact Engineering, 2021, 154: 103888. DOI: 10.1016/j.ijimpeng.2021.103888.
    [11]
    ZHANG F L, POH L H, ZHANG M H. Critical parameters for the penetration depth in cement-based materials subjected to small caliber non-deformable projectile impact [J]. International Journal of Impact Engineering, 2020, 137: 103471. DOI: 10.1016/j.ijimpeng.2019.103471.
    [12]
    WU H, FANG Q, CHEN X. W, et al. Projectile penetration of ultra-high performance cement based composites at 510–1320 m/s [J]. Construction and Building Materials, 2015, 74: 188–200. DOI: 10.1016/j.conbuildmat.2014.10.041.
    [13]
    LIU J, WU C Q, SU Y, et al. Experimental and numerical studies of ultra-high performance concrete targets against high-velocity projectile impacts [J]. Engineering Structures, 2018, 173: 166–179. DOI: 10.1016/j.engstruct.2018.06.098.
    [14]
    LIU J, WU C Q, CHEN X W, et al. Numerical study of ultra-high performance concrete under non-deformable projectile penetration [J]. Construction and Building Materials, 2017, 135: 447–458. DOI: 10.1016/j.conbuildmat.2016.12.216.
    [15]
    梁斌. 弹丸对有界混凝土靶的侵彻研究 [D]. 北京: 中国工程物理研究院, 2004: 10−15.
    [16]
    薛建锋. 弹体侵彻与贯穿混凝土靶的效应研究 [D]. 南京: 南京理工大学, 2016: 96−105.

    XUE J F. Research on the performance of projectile penetration and perforation into concrete target [D]. Nanjing: Nanjing University of Science & Technology, 2016: 96−105.
    [17]
    钱七虎, 王明洋. 岩土中的冲击爆炸效应 [M]. 北京: 国防工业出版社, 2010.

    QIAN Q H, WANG M Y. Impact and explosion effects in rock and soil [M]. Beijing: National Defense Industry Press, 2010.
    [18]
    刘志林, 王晓鸣, 李文彬, 等. 靶板厚度对卵形弹丸垂直贯穿中等厚度混凝土靶的影响 [J]. 爆炸与冲击, 2018, 38(5): 1083–1090. DOI: 10.11883/bzycj-2017-0078.

    LIU Z L, WANG X M, LI W B, et al. Numerical and experimental study of an ogival projectile vertical perforating a medium thickness concrete target [J]. Explosion and Shock Waves, 2018, 38(5): 1083–1090. DOI: 10.11883/bzycj-2017-0078.
    [19]
    王晓飞, 周海龙, 王海龙. 超高性能混凝土的抗剪强度 [J]. 硅酸盐学报, 2022, 50(8): 2190–2195. DOI: 10.14062/j.issn.0454-5648.20220127.

    WANG X F, ZHOU H L, WANG H L. Shear strength of ultra-high performance concrete [J]. Journal of the Chinese Ceramic Society, 2022, 50(8): 2190–2195. DOI: 10.14062/j.issn.0454-5648.20220127.
    [20]
    李洪超. 岩石RHT模型理论及主要参数确定方法研究 [D]. 北京: 中国矿业大学(北京), 2016: 56–57.

    LI H C. The study of the rock RHT model and to determine the values of main parameters [D]. Beijing: China University of Mining & Technology (Beijing), 2016: 56–57.
    [21]
    HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates and high pressures [C]//Proceedings of the 14th International Symposium on Ballistics. Québec City, 1993: 591–600.
    [22]
    RIEDEL W, THOMA K, HIERMAIER S. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes [C]// Proceedings of the 9th International Symposium Interaction of the Effect of Munitions with Structures. Berlin, 1999.
    [23]
    LI Q M, CHEN X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile [J]. International Journal of Impact Engineering, 2003, 28(1): 93–116. DOI: 10.1016/S0734-743X(02)00037-4.
    [24]
    FORRESTAL M J. Penetration into dry porous rock [J]. International Journal of Solids and Structures, 1986, 22(12): 1485–1500. DOI: 10.1016/0020-7683(86)90057-0.
    [25]
    FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4.
    [26]
    FORRESTAL M J, LUK V K. Dynamic spherical cavity-expansion in a compressible elastic-plastic solid [J]. Journal of Applied Mechanics, 1988, 55(2): 275–279. DOI: 10.1115/1.3173672.
    [27]
    LUK V K, FORRESTAL M J, AMOS D E. Dynamic spherical cavity expansion of strain-hardening materials [J]. Journal of Applied Mechanics, 1991, 58(1): 1–6. DOI: 10.1115/1.2897150.
    [28]
    National Defense Research Committee. Effects of impact and explosion: summary technical report of division 2, Vol. 1 [R]. Washington DC: National Defense Research Committee, 1946.
    [29]
    ZHANG M H, SHIM V P W, LU G, et al. Resistance of high-strength concrete to projectile impact [J]. International Journal of Impact Engineering, 2005, 31(7): 825–841. DOI: 10.1016/j.ijimpeng.2004.04.009.
    [30]
    YOUNG C W. Penetration equations: SAND-97-2426 [R]. Albuquerque: Sandia National Laboratories, 1997.
    [31]
    WANG Z L, LI Y C, SHEN R F, et al. Numerical study on craters and penetration of concrete slab by ogive-nose steel projectile [J]. Computers and Geotechnics, 2007, 34(1): 1–9. DOI: 10.1016/j.compgeo.2006.09.001.
    [32]
    杨华伟. 尖卵形长杆弹侵彻半无限混凝土靶的动力学行为研究 [D]. 太原: 太原理工大学, 2018: 44–49.

    YANG H W. Investigation on the dynamic response of long ogive-nosed projectiles penetrating into semi-infinite concrete targets [D]. Taiyuan: Taiyuan University of Technology, 2018: 44–49.
    [33]
    CHELAPATI C V, KENNEDY R P, WALL I B. Probabilistic assessment of aircraft hazard for nuclear power plants [J]. Nuclear Engineering and Design, 1972, 19(2): 333–364. DOI: 10.1016/0029-5493(72)90136-7.
    [34]
    任辉启, 穆朝民, 刘瑞超, 等. 精确制导武器侵彻效应与工程防护 [M]. 北京: 科学出版社, 2016: 293–294.

    REN H Q, MU C M, LIU R C, et al. Penetration effects of precision guided weapons and engineering protection [M]. Beijing: Science Press, 2016: 293–294.
    [35]
    RONG Z D, SUN W, ZHANG Y S, et al. Anti-penetration behavior of ultra-high performance steel fiber reinforced concrete and its numerical simulation [J]. Journal of the Chinese Ceramic Society, 2010, 38(9): 1723–1730. DOI: 10.14062/j.issn.0454-5648.2010.09.001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(6)

    Article Metrics

    Article views (663) PDF downloads(379) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return