Citation: | GUO Jiaqi, PEI Bei, XU Mengjiao, LI Shiliang, WEI Shuangming, HU Ziwei. Coupling effect of fuel property parameters on gas/coal dust composite explosion[J]. Explosion And Shock Waves, 2022, 42(11): 115402. doi: 10.11883/bzycj-2022-0300 |
[1] |
张巍, 张帆, 张军, 等. 与新能源耦合发展 推动现代煤化工绿色低碳转型的思考与建议 [J]. 中国煤炭, 2021, 47(11): 56–60. DOI: 10.19880/j.cnki.ccm.2021.11.009.
ZHANG W, ZHANG F, ZHANG J, et al. Coupling development with new energy and thinking and suggestions on promoting the green and low-carbon transformation of modern coal chemical industry [J]. China Coal, 2021, 47(11): 56–60. DOI: 10.19880/j.cnki.ccm.2021.11.009.
|
[2] |
毛健雄. 燃煤耦合生物质发电 [J]. 分布式能源, 2017, 2(5): 47–54. DOI: 10.16513/j.cnki.10-1427/tk.2017.05.008.
MAO J X. Co-firing biomass with coal for power generation [J]. Distributed Energy, 2017, 2(5): 47–54. DOI: 10.16513/j.cnki.10-1427/tk.2017.05.008.
|
[3] |
马仑, 方庆艳, 张成, 等. 深度空气分级下煤粉耦合氨燃烧及NO生成特性 [J]. 洁净煤技术, 2022, 28(3): 201–213. DOI: 10.13226/j.issn.1006-6772.CC21101401.
MA L, FANG Q Y, ZHANG C, et al. Combustion and NO formation characteristics of pulverized coal co-firing with ammonia in a deep-air staging condition [J]. Clean Coal Technology, 2022, 28(3): 201–213. DOI: 10.13226/j.issn.1006-6772.CC21101401.
|
[4] |
王德明, 邵振鲁, 朱云飞. 煤矿热动力重大灾害中的几个科学问题 [J]. 煤炭学报, 2021, 46(1): 57–64. DOI: 10.13225/j.cnki.jccs.YG20.1798.
WANG D M, SHAO Z L, ZHU Y F. Several scientific issues on major thermodynamic disasters in coal mines [J]. Journal of China Coal Society, 2021, 46(1): 57–64. DOI: 10.13225/j.cnki.jccs.YG20.1798.
|
[5] |
CASHDOLLAR K L. Overview of dust explosibility characteristics [J]. Journal of Loss Prevention in the Process Industries, 2000, 13(3): 183–199. DOI: 10.1016/S0950-4230(99)00039-X.
|
[6] |
GOING J E, CHATRATHI K, CASHDOLLAR K L. Flammability limit measurements for dusts in 20-L and 1-m3 vessels [J]. Journal of Loss Prevention in the Process Industries, 2000, 13(3): 209–219. DOI: 10.1016/S0950-4230(99)00043-1.
|
[7] |
KUNDU S K, ZANGANEH J, ESCHEBACH D, et al. Explosion severity of methane–coal dust hybrid mixtures in a ducted spherical vessel [J]. Powder Technology, 2018, 323: 95–102. DOI: 10.1016/j.powtec.2017.09.041.
|
[8] |
MISHRA D P, AZAM S. Experimental investigation on effects of particle size, dust concentration and dust-dispersion-air pressure on minimum ignition temperature and combustion process of coal dust clouds in a G-G furnace [J]. Fuel, 2018, 227: 424–433. DOI: 10.1016/j.fuel.2018.04.122.
|
[9] |
CLONEY C T, RIPLEY R C, PEGG M J, et al. Lower flammability limits of hybrid mixtures containing 10 micron coal dust particles and methane gas [J]. Process Safety and Environmental Protection, 2018, 120: 215–226. DOI: 10.1016/j.psep.2018.09.004.
|
[10] |
CLONEY C T, RIPLEY R C, PEGG M J, et al. Role of particle diameter in the lower flammability limits of hybrid mixtures containing coal dust and methane gas [J]. Journal of Loss Prevention in the Process Industries, 2019, 61: 206–212. DOI: 10.1016/j.jlp.2019.06.010.
|
[11] |
李庆钊, 翟成, 吴海进, 等. 基于20 L球形爆炸装置的煤尘爆炸特性研究 [J]. 煤炭学报, 2011, 36(S1): 119–124. DOI: 10.13225/j.cnki.jccs.2011.s1.031.
LI Q Z, ZHAI C, WU H J, et al. Investigation on coal dust explosion characteristics using 20 L explosion sphere vessels [J]. Journal of China Coal Society, 2011, 36(S1): 119–124. DOI: 10.13225/j.cnki.jccs.2011.s1.031.
|
[12] |
LI Y, XU H L, WANG X S. Experimental study on the influence of initial pressure on explosion of methane-coal dust mixtures [J]. Procedia Engineering, 2013, 62: 980–984. DOI: 10.1016/j.proeng.2013.08.151.
|
[13] |
SONG S X, CHENG Y F, MENG X R, et al. Hybrid CH4/coal dust explosions in a 20-L spherical vessel [J]. Process Safety and Environmental Protection, 2019, 122: 281–287. DOI: 10.1016/j.psep.2018.12.023.
|
[14] |
LIU Q M, BAI C H, LI X D, et al. Coal dust/air explosions in a large-scale tube [J]. Fuel, 2010, 89(2): 329–335. DOI: 10.1016/j.fuel.2009.07.010.
|
[15] |
司荣军, 李润之, 苏岱峰. 煤尘云质量浓度对瓦斯爆炸压力影响的试验研究 [J]. 安全与环境学报, 2018, 18(5): 1796–1798. DOI: 10.13637/j.issn.1009-6094.2018.05.025.
SI R J, LI R Z, SU D F. Investigation of the influence of the coal dust cloud on the gas explosion pressure [J]. Journal of Safety and Environment, 2018, 18(5): 1796–1798. DOI: 10.13637/j.issn.1009-6094.2018.05.025.
|
[16] |
李润之. 瓦斯煤尘共存条件下的煤尘云爆炸下限 [J]. 爆炸与冲击, 2018, 38(4): 913–917. DOI: 10.11883/bzycj-2016-0331.
LI R Z. Minimum explosive concentration of coal dust cloud in the coexistence of gas and coal dust [J]. Explosion and Shock Waves, 2018, 38(4): 913–917. DOI: 10.11883/bzycj-2016-0331.
|
[17] |
景国勋, 张胜旗, 段新伟, 等. 竖直管道内煤尘浓度对瓦斯爆炸特性影响研究 [J]. 中国安全科学学报, 2020, 30(3): 15–20. DOI: 10.16265/j.cnki.issn1003-3033.2020.03.003.
JING G X, ZHANG S Q, DUAN X W, et al. Impact of coal dust concentration on gas explosion in vertical pipelines [J]. China Safety Science Journal, 2020, 30(3): 15–20. DOI: 10.16265/j.cnki.issn1003-3033.2020.03.003.
|
[18] |
景国勋, 彭乐, 班涛, 等. 甲烷煤尘耦合爆炸传播特性及伤害研究 [J]. 中国安全科学学报, 2022, 32(1): 72–78. DOI: 10.16265/j.cnki.issn1003-3033.2022.01.010.
JING G X, PENG L, BAN T, et al. Research on pressure propagation and injury of methane and coal dust coupled explosion [J]. China Safety Science Journal, 2022, 32(1): 72–78. DOI: 10.16265/j.cnki.issn1003-3033.2022.01.010.
|
[19] |
CAO W G, QIN Q F, CAO W, et al. Experimental and numerical studies on the explosion severities of coal dust/air mixtures in a 20-L spherical vessel [J]. Powder Technology, 2017, 310: 17–23. DOI: 10.1016/j.powtec.2017.01.019.
|
[20] |
裴蓓, 朱知印, 余明高, 等. 瓦斯/煤尘爆炸初期复合火焰加速及灾害强化机制分析 [J]. 工程热物理学报, 2021, 42(7): 1879–1886.
PEI B, ZHU Z Y, YU M G, et al. Analysis on the acceleration of composite flame and the strengthening mechanism of disaster in the initial stage of gas/coal dust explosion [J]. Journal of Engineering Thermophysics, 2021, 42(7): 1879–1886.
|
[21] |
陈晓坤, 张自军, 王秋红, 等. 20 L近球形容器中微米级铝粉的爆炸特性 [J]. 爆炸与冲击, 2018, 38(5): 1130–1136. DOI: 10.11883/bzycj-2017-0101.
CHEN X K, ZHANG Z J, WANG Q H, et al. Explosion characteristics of micro-sized aluminum dust in 20L spherical vessel [J]. Explosion and Shock Waves, 2018, 38(5): 1130–1136. DOI: 10.11883/bzycj-2017-0101.
|
[22] |
覃小玲, 李晓泉. NH4H2PO4对蔗糖粉尘爆炸的抑制作用试验研究 [J]. 中国安全科学学报, 2020, 30(4): 41–46. DOI: 10.16265/j.cnki.issn1003-3033.2020.04.007.
QIN X L, LI X Q. Experimental research on suppression of NH4H2PO4 on sucrose dust explosion [J]. China Safety Science Journal, 2020, 30(4): 41–46. DOI: 10.16265/j.cnki.issn1003-3033.2020.04.007.
|
[23] |
WU X L, XU S, PANG A M, et al. Hazard evaluation of ignition sensitivity and explosion severity for three typical MH2 (M= Mg, Ti, Zr) of energetic materials [J]. Defence Technology, 2021, 17(4): 1262–1268. DOI: 10.1016/j.dt.2020.06.011.
|
[24] |
PICO P, RATKOVICH N, MUÑOZ F, et al. Analysis of the explosion behaviour of wheat starch/pyrolysis gases hybrid mixtures through experimentation and CFD-DPM simulations [J]. Powder Technology, 2020, 374: 330–347. DOI: 10.1016/j.powtec.2020.07.016.
|
[25] |
WANG X W, WANG Z R, NI L, et al. Explosion characteristics of aluminum powder in different mixed gas environments [J]. Powder Technology, 2020, 369: 53–71. DOI: 10.1016/j.powtec.2020.04.056.
|
[26] |
徐伟巍, 王家祎, 覃欣欣, 等. 酒精蒸气-烟草粉尘耦合体系燃爆猛度特性研究 [J]. 工业安全与环保, 2021, 47(5): 9–12. DOI: 10.3969/j.issn.1001-425X.2021.05.003.
XU W W, WANG J Y, QIN X X, et al. Study on the explosion fierce characteristics of alcohol vapor-tobacco dust coupling [J]. Industrial Safety and Environmental Protection, 2021, 47(5): 9–12. DOI: 10.3969/j.issn.1001-425X.2021.05.003.
|
[27] |
孙超伦, 张一民, 裴蓓, 等. 惰气/赤泥两相抑爆剂抑制瓦斯爆炸试验研究 [J]. 中国安全科学学报, 2020, 30(10): 112–118. DOI: 10.16265/j.cnki.issn1003-3033.2020.10.016.
SUN C L, ZHANG Y M, PEI B, et al. Experimental study on suppression effects of inert gas/red mud two-phase inhibitors on gas explosion [J]. China Safety Science Journal, 2020, 30(10): 112–118. DOI: 10.16265/j.cnki.issn1003-3033.2020.10.016.
|
[28] |
ABBAS Z, ZINKE R, GABEL D, et al. Theoretical evaluation of lower explosion limit of hybrid mixtures [J]. Journal of Loss Prevention in the Process Industries, 2019, 60: 296–302. DOI: 10.1016/j.jlp.2019.05.014.
|
[29] |
ABBAS Z, GABEL D, KRIETSCH A, et al. Quasi-static dispersion of dusts for the determination of lower explosion limits of hybrid mixtures [J]. Journal of Loss Prevention in the Process Industries, 2022, 74: 104640. DOI: 10.1016/j.jlp.2021.104640.
|
[30] |
JIANG J J, LIU Y, MANNAN M S. A correlation of the lower flammability limit for hybrid mixtures [J]. Journal of Loss Prevention in the Process Industries, 2014, 32: 120–126. DOI: 10.1016/j.jlp.2014.07.014.
|
[31] |
ADDAI E K, CLOUTHIER M, AMYOTTE P, et al. Experimental investigation of limiting oxygen concentration of hybrid mixtures [J]. Journal of Loss Prevention in the Process Industries, 2019, 57: 120–130. DOI: 10.1016/j.jlp.2018.11.016.
|
[32] |
ADDAI E K, GABEL D, KAMAL M, et al. Minimum ignition energy of hybrid mixtures of combustible dusts and gases [J]. Process Safety and Environmental Protection, 2016, 102: 503–512. DOI: 10.1016/j.psep.2016.05.005.
|
[33] |
杨虎, 钟波, 刘琼荪. 应用数理统计 [M]. 北京: 清华大学出版社, 2006: 123-158.
YANG H, ZHONG B, LIU Q S. Application mathematical statistic study [M]. Beijing: Tsinghua University Press, 2006: 123-158.
|
[34] |
王亚军, 徐秀艳, 秦宪礼. 煤粉对泡沫金属抑制爆炸火焰波性能的影响规律 [J]. 煤炭学报, 2017, 42(11): 2885–2891. DOI: 10.13225/j.cnki.jccs.2017.0476.
WANG Y J, XU X Y, QIN X L. Study on the influence regulation after adding coal dust for inhibition of flame wave of gas explosion by foam metal [J]. Journal of China Coal Society, 2017, 42(11): 2885–2891. DOI: 10.13225/j.cnki.jccs.2017.0476.
|
[35] |
GARCIA-AGREDA A, DI BENEDETTO A, RUSSO P, et al. Dust/gas mixtures explosion regimes [J]. Powder Technology, 2011, 205(1): 81–86. DOI: 10.1016/j.powtec.2010.08.069.
|
[36] |
周永浩, 甘波, 姜海鹏, 等. 甲烷/煤尘复合爆炸火焰的传播特性 [J]. 爆炸与冲击, 2022, 42(1): 015402. DOI: 10.11883/bzycj-2021-0064.
ZHOU Y H, GAN B, JIANG H P, et al. Investigations on the flame propagation characteristics in methane and coal dust hybrid explosions [J]. Explosion and Shock Waves, 2022, 42(1): 015402. DOI: 10.11883/bzycj-2021-0064.
|
[37] |
NISHIMURA I, MOGI T, DOBASHI R. Simple method for predicting pressure behavior during gas explosions in confined spaces considering flame instabilities [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(2): 351–354. DOI: 10.1016/j.jlp.2011.08.009.
|
[38] |
汤其建, 秦汝祥, 戴广龙. 索特平均直径对煤粉及其在瓦斯气氛下爆炸特性的影响 [J]. 煤炭学报, 2021, 46(2): 489–497. DOI: 10.13225/j.cnki.jccs.2019.1539.
TANG Q J, QIN R X, DAI G L. Effect of Sauter mean diameter of coal dust on its explosibility with and without methane gas [J]. Journal of China Coal Society, 2021, 46(2): 489–497. DOI: 10.13225/j.cnki.jccs.2019.1539.
|