CHENG Yuehua, ZHOU Fei, WU Hao. Design of concrete shield against the combination of penetration and explosion of warheads[J]. Explosion And Shock Waves, 2023, 43(4): 045101. doi: 10.11883/bzycj-2022-0346
Citation: CHENG Yuehua, ZHOU Fei, WU Hao. Design of concrete shield against the combination of penetration and explosion of warheads[J]. Explosion And Shock Waves, 2023, 43(4): 045101. doi: 10.11883/bzycj-2022-0346

Design of concrete shield against the combination of penetration and explosion of warheads

doi: 10.11883/bzycj-2022-0346
  • Received Date: 2022-08-09
  • Rev Recd Date: 2023-01-09
  • Available Online: 2023-02-20
  • Publish Date: 2023-04-05
  • Accurately evaluating the damage and failure of concrete shield subjected to combination of penetration and explosion of warheads can provide an important reference for the design of protective structures. Firstly, based on the frame of Karagozian & Case (K&C) model, a newly dynamic-damage constitutive model was established. The hydrostatic pressure, Lode angle, strain rate, and damage were all considered in strength surface. The tension and compression damages were described separately with a continued transition. Besides, the contribution of shear deformation and hydrostatic compression were also considered. Then, the combined penetration and explosion test of 105-mm-caliber projectile on the semi-infinite concrete target was conducted. The corresponding numerical simulation was conducted to verify the accuracy of the constitutive model, the parameters, and the finite element analysis approach in describing the dynamic resistance of concrete. Furthermore, by conducting the numerical simulations of the existing prefabricated hole charge explosion test on the finite concrete plane, the accuracy of the established constitutive model, parameters, and finite element analysis approach in describing the damage evolution and cracking behavior of concrete was validated. Finally, the perforation limit and scabbing limit of normal strength concrete subjected to the combination of penetration and explosion of three typical warheads at sound velocity were determined. The results show that, the perforation limits of the SDB, WDU-43/B, and BLU-109/B warheads are 1.4, 3.4 and 3.8 m, respectively. The scabbing limit are 3.6, 6.3 and 8.3 m, respectively. Due to the differences of the explosive mass in warheads, the ratios of perforation limit and scabbing limit under combined penetration and explosion to the depth of penetration are not constant. The corresponding ratio ranges are 1.49−2.13 and 2.90−4.66, respectively.
  • [1]
    HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates and high pressures [C]// Proceedings of the 14th International Symposium on Ballistics, 1993.
    [2]
    RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes [C]// Proceedings of the 9th International Symposium on Interaction of the Effect of Munitions with Structures. Berlin-Strausberg, 1999.
    [3]
    MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9/10): 847–873. DOI: 10.1016/S0734-743X(97)00023-7.
    [4]
    KONG X Z, FANG Q, WU H, et al. Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model [J]. International Journal of Impact Engineering, 2016, 95: 61–71. DOI: 10.1016/j.ijimpeng.2016.04.014.
    [5]
    TU Z G, LU Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations [J]. International Journal of Impact Engineering, 2009, 36(1): 132–146. DOI: 10.1016/j.ijimpeng.2007.12.010.
    [6]
    KONG X Z, FANG Q, LI Q M, et al. Modified K&C model for cratering and scabbing of concrete slabs under projectile impact [J]. International Journal of Impact Engineering, 2017, 108: 217–228. DOI: 10.1016/j.ijimpeng.2017.02.016.
    [7]
    WEERHEIJM J, VAN DOORMAAL J C A M. Tensile failure of concrete at high loading rates: new test data on strength and fracture energy from instrumented spalling tests [J]. International Journal of Impact Engineering, 2007, 34(3): 609–626. DOI: 10.1016/j.ijimpeng.2006.01.005.
    [8]
    FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F.
    [9]
    陈小伟, 张方举, 杨世全, 等. 动能深侵彻弹的力学设计(Ⅲ): 缩比实验分析 [J]. 爆炸与冲击, 2006, 26(2): 105–114. DOI: 10.11883/1001-1455(2006)02-0105-10.

    CHEN X W, ZHANG F J, YANG S Q, et al. Mechanics of structural design of EPW (Ⅲ): Investigations on the reduced-scale tests [J]. Explosion and Shock Waves, 2006, 26(2): 105–114. DOI: 10.11883/1001-1455(2006)02-0105-10.
    [10]
    FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743x(94)80024-4.
    [11]
    FREW D J, HANCHAK S J, GREEN M L, et al. Penetration of concrete targets with ogive-nose steel rods [J]. International Journal of Impact Engineering, 1998, 21(6): 489–497. DOI: 10.1016/S0734-743X(98)00008-6.
    [12]
    孙传杰, 卢永刚, 张方举, 等. 新型头形弹体对混凝土的侵彻 [J]. 爆炸与冲击, 2010, 30(3): 269–275. DOI: 10.11883/1001-1455(2010)03-0269-07.

    SUN C J, LU Y G, ZHANG F J, et al. Penetration of cylindrical-nose-tip projectiles into concrete targets [J]. Explosion and Shock Waves, 2010, 30(3): 269–275. DOI: 10.11883/1001-1455(2010)03-0269-07.
    [13]
    黄蒙, 欧卓成, 段卓平, 等. 刚性弹体侵彻混凝土的相似性研究 [J]. 兵工学报, 2016, 37(S2): 176–180.

    HUANG M, OU Z C, DUAN Z P, et al. A study of similarity Analysis of hard projectile penetrating into concrete [J]. Acta Armamentarii, 2016, 37(S2): 176–180.
    [14]
    邓勇军, 陈小伟, 钟卫洲, 等. 弹体正侵彻钢筋混凝土靶的试验及数值模拟研究 [J]. 爆炸与冲击, 2020, 40(2): 023101. DOI: 10.11883/bzycj-2019-0001.

    DENG Y J, CHEN X W, ZHONG W Z, et al. Experimental and numerical study on normal penetration of a projectile into a reinforced concrete target [J]. Explosion and Shock Waves, 2020, 40(2): 023101. DOI: 10.11883/bzycj-2019-0001.
    [15]
    马天宝, 武珺, 宁建国. 弹体高速侵彻钢筋混凝土的实验与数值模拟研究 [J]. 爆炸与冲击, 2019, 39(10): 103301. DOI: 10.11883/bzycj-2018-0275.

    MA T B, WU J, NING J G. Experimental and numerical study on projectiles’ high-velocity penetration into reinforced concrete [J]. Explosion and Shock Waves, 2019, 39(10): 103301. DOI: 10.11883/bzycj-2018-0275.
    [16]
    左魁, 张继春, 曾宪明, 等. BLU-109B模型弹在岩石介质中成坑效应试验研究 [J]. 岩石力学与工程学报, 2007, 26(S1): 2767–2671. DOI: 10.3321/j.issn:1000-6915.2007.z1.027.

    ZUO K, ZHANG J C, ZENG X M, et al. Experimental study on formation of craters in rock with BLU-109B earth penetrating model projectiles [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 2767–2671. DOI: 10.3321/j.issn:1000-6915.2007.z1.027.
    [17]
    GENG H, LU H, SUN S Z, et al. Experimental study and damage effect analysis of concrete structures under the combined loadings of penetration and explosion [J]. Shock and Vibration, 2020, 2020: 2137945. DOI: 10.1155/2020/2137945.
    [18]
    SUN S Z, LU H, YUE S L, et al. The composite damage effects of explosion after penetration in plain concrete targets [J]. International Journal of Impact Engineering, 2021, 153: 103862. DOI: 10.1016/j.ijimpeng.2021.103862.
    [19]
    WU H, LI Y C, FANG Q, et al. Scaling effect of rigid projectile penetration into concrete target: 3D mesoscopic analyses [J]. Construction and Building Materials, 2019, 208: 506–524. DOI: 10.1016/j.conbuildmat.2019.03.040.
    [20]
    彭永, 卢芳云, 方秦, 等. 弹体侵彻混凝土靶体的尺寸效应分析 [J]. 爆炸与冲击, 2019, 39(11): 113301. DOI: 10.11883/bzycj-2018-0402.

    PENG Y, LU F Y, FANG Q, et al. Analyses of the size effect for projectile penetrations into concrete targets [J]. Explosion and Shock Waves, 2019, 39(11): 113301. DOI: 10.11883/bzycj-2018-0402.
    [21]
    程月华, 姜鹏飞, 吴昊, 等. 考虑尺寸效应的典型钻地弹侵彻混凝土深度分析 [J]. 爆炸与冲击, 2022, 42(6): 063302. DOI: 10.11883/bzycj-2021-0373.

    CHENG Y H, JIANG P F, WU H, et al. On penetration depth of typical earth-penetrating projectiles into concrete targets considering the scaling effect [J]. Explosion and Shock Waves, 2022, 42(6): 063302. DOI: 10.11883/bzycj-2021-0373.
    [22]
    LAI J Z, GUO X J, ZHU Y Y. Repeated penetration and different depth explosion of ultra-high performance concrete [J]. International Journal of Impact Engineering, 2015, 84: 1–12. DOI: 10.1016/j.ijimpeng.2015.05.006.
    [23]
    FAN Y, CHEN L, YU R Q, et al. Experimental study of damage to ultra-high performance concrete slabs subjected to partially embedded cylindrical explosive charges [J]. International Journal of Impact Engineering, 2022, 168: 104298. DOI: 10.1016/j.ijimpeng.2022.104298.
    [24]
    GERSTLE K B, ZIMMERMAN R M, WINKLER H, et al. Behavior of concrete under multiaxial stress states [J]. Journal of the Engineering Mechanics Division, 1980, 106(6): 1383–1403. DOI: 10.1061/JMCEA3.0002671.
    [25]
    KUPFER H B, GERSTLE K H. Behavior of concrete under biaxial stresses [J]. Journal of the Engineering Mechanics Division, 1969, 99(4): 853–866. DOI: 10.1061/JMCEA3.0001789.
    [26]
    WILLIAMS E M, AKERS S A, REED P A. Laboratory characterization of fine aggregate cementitious material: ERDC/GSL TR-05-16 [R]. Vicksburg, MS: Geotechnical and Structures Laboratory, US Army Engineer Research and Development Center, 2005.
    [27]
    RANKINE W J M. Manual of applied mechanics [M]. London: Griffin, 1876.
    [28]
    XU H, WEN H M. Semi-empirical equations for the dynamic strength enhancement of concrete-like materials [J]. International Journal of Impact Engineering, 2013, 60: 76–81. DOI: 10.1016/j.ijimpeng.2013.04.005.
    [29]
    LS-DYNA. Keywords user’s manual. version 971 [M]. Livermore: Livermore Software Technology Corporation, 2012.
    [30]
    LIM J C, OZBAKKALOGLU T. Stress-strain model for normal- and light-weight concretes under uniaxial and triaxial compression [J]. Construction and Building Materials, 2014, 71: 492–509. DOI: 10.1016/j.conbuildmat.2014.08.050.
    [31]
    MURRAY Y D. User manual for LS-DYNA concrete material model 159 [M]. Washington DC: US Department of Transportation, 2007. FHWA-HRT-05-062.
    [32]
    SARGIN M. Stress-strain relationships for concrete and the analysis of structural concrete sections [M]. Waterloo: Solid Mechanics Division, University of Waterloo, 1971.
    [33]
    HORDIJK D A. Local approach to fatigue of concrete [D]. Delft: Delft University of Technology, 1991.
    [34]
    CUI J, HAO H, SHI Y C, et al. Experimental study of concrete damage under high hydrostatic pressure [J]. Cement and Concrete Research, 2017, 100: 140–152. DOI: 10.1016/j.cemconres.2017.06.005.
    [35]
    SIMO J C, HUGHES T J R. Computational inelasticity [M]. New York: Springer, 1998. DOI: 10.1007/b98904.
    [36]
    XU H, WEN H M. A computational constitutive model for concrete subjected to dynamic loadings [J]. International Journal of Impact Engineering, 2016, 91: 116–125. DOI: 10.1016/j.ijimpeng.2016.01.003.
    [37]
    WANG Y, KONG X Z, FANG Q, et al. Modelling damage mechanisms of concrete under high confinement pressure [J]. International Journal of Impact Engineering, 2021, 150: 103815. DOI: 10.1016/j.ijimpeng.2021.103815.
    [38]
    ATTARD M M, SETUNGE S. Stress-strain relationship of confined and unconfined concrete [J]. Material Journal, 1996, 93(5): 432–442. DOI: 10.14359/9847.
    [39]
    王银, 孔祥振, 方秦, 等. 弹体对混凝土材料先侵彻后爆炸损伤破坏效应的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.

    WANG Y, KONG X, FANG Q, et al. Numerical investigation on damage and failure of concrete targets subjected to projectile penetration followed by explosion [J]. Explosion and Shock Waves, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.
  • Relative Articles

    [1]XU Hongfei, WANG Fang, WU Yuwen, WENG Chunsheng. Investigation into the instability mechanism of hydrogen-oxygen rotating detonation wave propagation using a small-scale model[J]. Explosion And Shock Waves, 2025, 45(1): 012101. doi: 10.11883/bzycj-2024-0130
    [2]GAO Shiqing, ZOU Liyong, TANG Jiupeng, LI Ji, LIN Jianyu. Numerical simulation of single-mode Richtmyer-Meshkov instability caused by high-Mach number shock wave[J]. Explosion And Shock Waves, 2024, 44(7): 073201. doi: 10.11883/bzycj-2023-0458
    [3]YANG Fan, JIANG Chunxue, WANG Yuhui, LI Shiquan, WANG Jianping, ZHANG Guoqing. Influence of kerosene droplet diameters on the flow field of a two-phase rotating detonation engine[J]. Explosion And Shock Waves, 2023, 43(2): 022101. doi: 10.11883/bzycj-2022-0068
    [4]GE Gaoyang, MA Yuan, HOU Shizhuo, XIA Zhenjuan, MA Hu, DENG Li, ZHOU Changsheng. Experimental study on the effect of equivalent ratio on working characteristics of gasoline fuel two-phase rotating detonation engine[J]. Explosion And Shock Waves, 2021, 41(11): 112102. doi: 10.11883/bzycj-2020-0465
    [5]WANG Tao, WANG Bing, LIN Jianyu, ZHONG Min, BAI Jingsong, LI Ping, TAO Gang. Numerical investigations of the interface instabilities of metallic material under implosion in cylindrical convergent geometry[J]. Explosion And Shock Waves, 2020, 40(5): 052201. doi: 10.11883/bzycj-2019-0150
    [6]XU Can, DENG Li, MA Hu, YU Ling. Annular gaps width effecting on performance of rotating detonation engine[J]. Explosion And Shock Waves, 2019, 39(3): 032102. doi: 10.11883/bzycj-2017-0248
    [7]WANG Zhen, WANG Tao, BAI Jingsong, XIAO Jiaxin. Numerical study of non-uniformity effect on Richtmyer-Meshkov instability induced by non-planar shock wave[J]. Explosion And Shock Waves, 2019, 39(4): 041407. doi: 10.11883/bzycj-2018-0342
    [8]LI Baoxing, WENG Chunsheng. Influence of liquid fuel on the detonation characteristics of continuous rotating detonation engine[J]. Explosion And Shock Waves, 2018, 38(2): 331-338. doi: 10.11883/bzycj-2016-0240
    [9]Zhao Huanjuan, J.H.S.Lee, Zhang Yinghua, Qian Xinming, Yan Yiran. Effect of argon dilution on detonation instability of C2H2-O2 mixture and its quantitative analysis[J]. Explosion And Shock Waves, 2017, 37(4): 577-584. doi: 10.11883/1001-1455(2017)04-0577-08
    [10]Huang Xiaolong, Weng Chunsheng, Li Ning, Xu Guiyang. Experimental study of acoustic behavior of three-tube PDE system in near-field[J]. Explosion And Shock Waves, 2016, 36(5): 633-639. doi: 10.11883/1001-1455(2016)05-0633-07
    [11]Hao Pengcheng, Feng Qijing, Hu Xiaomian. A numerical study of the instability of the metal shell in the implosion[J]. Explosion And Shock Waves, 2016, 36(6): 739-744. doi: 10.11883/1001-1455(2016)06-0739-06
    [12]Liao Shenfei, Zou Liyong, Liu Jinhong, Bai Jinsong, Wang Yanping. Experimental study of Richtmyer-Meshkov instabilityin a heavy gas cylinder interacting with reflected shock wave[J]. Explosion And Shock Waves, 2016, 36(1): 87-92. doi: 10.11883/1001-1455(2016)01-0087-06
    [13]LIU Jin-hong, ZOU Li-yong, BAI Jing-song, TAN Duo-wang, HUANG Wen-bin, GUO Wen-can. Richtmyer-Meshkovinstabilityofshock-acceleratedair/SF6interfaces[J]. Explosion And Shock Waves, 2011, 31(2): 135-140. doi: 10.11883/1001-1455(2011)02-0135-06
    [14]WANG Chang-jian, GUO Chang-ming, XU Sheng-li. Study on acceleration of shock generated by normal reflection of gaseous detonation wave[J]. Explosion And Shock Waves, 2007, 27(2): 143-150. doi: 10.11883/1001-1455(2007)02-0143-08
    [15]ZHONG Cheng-wen, LIU Jian-wen, ZHAO Shu-miao, ZHAO Hui-qiang. Numerical investigation of multi-cycle pulse detonation engine[J]. Explosion And Shock Waves, 2007, 27(6): 535-540. doi: 10.11883/1001-1455(2007)06-0535-06
    [16]YU Lu-jun, FAN Bao-chun, DONG Gang, GUI Ming-yue. Numerical simulation of the process on a pulse detonation engine[J]. Explosion And Shock Waves, 2006, 26(6): 522-527. doi: 10.11883/1001-1455(2006)06-0522-06
  • Cited by

    Periodical cited type(1)

    1. 徐鸿飞,王放,武郁文,翁春生. 基于小尺寸模型分析氢氧旋转爆轰波传播的不稳定性机制. 爆炸与冲击. 2025(01): 30-42 . 本站查看

    Other cited types(0)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(7)

    Article Metrics

    Article views (684) PDF downloads(175) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return