Citation: | YU Jun, LIU Fuyu, FANG Qin. Distribution pattern and simplified model of blast load for building columns under near-field near-ground explosion[J]. Explosion And Shock Waves, 2024, 44(1): 015201. doi: 10.11883/bzycj-2022-0366 |
[1] |
YU J, RINDER T, STOLZ A, et al. Dynamic progressive collapse of an RC assemblage induced by contact detonation [J]. Journal of Structural Engineering, 2014, 140(6): 04014014. DOI: 10.1061/(ASCE)ST.1943-541X.0000959.
|
[2] |
SHI Y C, LI Z X, HAO H. A new method for progressive collapse analysis of RC frames under blast loading [J]. Engineering Structures, 2010, 32(6): 1691–1703. DOI: 10.1016/j.engstruct.2010.02.017.
|
[3] |
LI J, HAO H. Numerical study of structural progressive collapse using substructure technique [J]. Engineering Structures, 2013, 52: 101–113. DOI: 10.1016/j.engstruct.2013.02.016.
|
[4] |
BRODE H L. Blast wave from a spherical charge [J]. The Physics of Fluids, 1959, 2(2): 217–229. DOI: 10.1063/1.1705911.
|
[5] |
BAKER W E. Explosions in air [M]. Austin, Texas: University of Texas Press, 1973: 6–10.
|
[6] |
HENRYCH J. The dynamics of explosion and its use [M]. Amsterdam: Elsevier Scientific, 1979: 161–164.
|
[7] |
Department of Defense (DOD). UFC 3-340-02 Structures to resist the effects of accidental explosions [S]. Washington: Department of Defense, 2008.
|
[8] |
汪维, 刘光昆, 赵强, 等. 近爆作用下方形板表面爆炸载荷分布函数研究 [J]. 中国科学: 物理学 力学 天文学, 2020, 50(2): 024615. DOI: 10.1360/SSPMA-2019-0188.
WANG W, LIU G K, ZHAO Q, et al. Study on load distributing function of square slab surface under close-in blast loading [J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2020, 50(2): 024615. DOI: 10.1360/SSPMA-2019-0188.
|
[9] |
WU C Q, HAO H. Modeling of simultaneous ground shock and airblast pressure on nearby structures from surface explosions [J]. International Journal of Impact Engineering, 2005, 31(6): 699–717. DOI: 10.1016/j.ijimpeng.2004.03.002.
|
[10] |
XIAO W, ANDRAE M, GEBBEKEN N. Development of a new empirical formula for prediction of triple point path [J]. Shock Waves, 2020, 30(6): 677–686. DOI: 10.1007/s00193-020-00968-7.
|
[11] |
CUI J, SHI Y C, LI Z X, et al. Failure analysis and damage assessment of RC columns under close-in explosions [J]. Journal of Performance of Constructed Facilities, 2015, 29(5): B4015003. DOI: 10.1061/(ASCE)CF.1943-5509.0000766.
|
[12] |
闫秋实, 杜修力. 典型地铁车站柱在爆炸荷载作用下损伤评估方法研究 [J]. 振动与冲击, 2017, 36(1): 1–7. DOI: 10.13465/j.cnki.jvs.2017.01.001.
YAN Q S, DU X L. Damage evaluation for a column of a typical subway station subjectedto internal blast loading [J]. Journal of Vibration and Shock, 2017, 36(1): 1–7. DOI: 10.13465/j.cnki.jvs.2017.01.001.
|
[13] |
CHEN L, HU Y, REN H Q, et al. Performances of the RC column under close-in explosion induced by the double-end-initiation explosive cylinder [J]. International Journal of Impact Engineering, 2019, 132: 103326. DOI: 10.1016/j.ijimpeng.2019.103326.
|
[14] |
DUA A, BRAIMAH A, KUMAR M. Experimental and numerical investigation of rectangular reinforced concrete columns under contact explosion effects [J]. Engineering Structures, 2020, 205: 109891. DOI: 10.1016/j.engstruct.2019.109891.
|
[15] |
YU J, YU X F, TANG J H, et al. Local damage of precast concrete columns with grout sleeve connections under contact detonation [J]. Engineering Structures, 2022, 265: 114499. DOI: 10.1016/j.engstruct.2022.114499.
|
[16] |
HU Y, CHEN L, FANG Q, et al. Blast loading model of the RC column under close-in explosion induced by the double-end-initiation explosive cylinder [J]. Engineering Structures, 2018, 175: 304–321. DOI: 10.1016/j.engstruct.2018.08.013.
|
[17] |
彭玉林, 吴昊, 方秦. 爆炸荷载在圆截面桥梁墩柱上的分布规律 [J]. 爆炸与冲击, 2019, 39(12): 122201. DOI: 10.11883/bzycj-2018-0317.
PENG Y L, WU H, FANG Q. Blast loading distributions on the circular sectional bridge columns [J]. Explosion and Shock Waves, 2019, 39(12): 122201. DOI: 10.11883/bzycj-2018-0317.
|
[18] |
WOODSON S C, BAYLOT J T. Structural collapse: quarter-scale model experiments [R]: Vicksburg: Engineer Research and Development Center, US Army Corps of Engineers, 1999.
|
[19] |
LIU L, MA Z J, ZONG Z H, et al. Blast response and damage mechanism of prefabricated segmental RC bridge piers [J]. Journal of Bridge Engineering, 2021, 26(4): 04021012. DOI: 10.1061/(ASCE)BE.1943-5592.0001698.
|
[20] |
胡志乐, 马亮亮, 吴昊, 等. 远距离近地面爆炸空气冲击波计算的网格尺寸优化与验证 [J]. 爆炸与冲击, 2022, 42(11): 114201. DOI: 10.11883/bzycj-2021-0499.
HU Z L, MA L L, WU H, et al. Optimization and verification of mesh size for air shock wave from large distance and near ground explosion [J]. Explosion and Shock Waves, 2022, 42(11): 114201. DOI: 10.11883/bzycj-2021-0499.
|
[1] | NIU Huanhuan, YAN Xiaopeng, LUO Haoshun, CHEN Jiajun, LI Zhiqiang. Mechanical response of sapphire transparent ceramic glass at different strain rates[J]. Explosion And Shock Waves, 2022, 42(7): 073105. doi: 10.11883/bzycj-2021-0434 |
[2] | GAO Yukui, TAO Xuefei. A review on the influences of high speed impact surface treatments on mechanical properties and microstructures of metallic materials[J]. Explosion And Shock Waves, 2021, 41(4): 041401. doi: 10.11883/bzycj-2020-0342 |
[3] | WANG Zhuangzhuang, XU Peng, FAN Zhiqiang, MIAO Yuzhong, GAO Yubo, NIE Taoyi. Study on static and dynamic mechanical properties and fracture mechanism of cenospheres[J]. Explosion And Shock Waves, 2020, 40(6): 063101. doi: 10.11883/bzycj-2019-0337 |
[4] | YU Zhongshen, FANG Xiang, LI Yuchun, REN Junkai, ZHANG Jun, SONG Jiaxing. Effects of TiH2 content on dynamic mechanical properties and impact sensitivity of Al/PTFE[J]. Explosion And Shock Waves, 2019, 39(9): 092301. doi: 10.11883/bzycj-2018-0256 |
[5] | WANG Zhen, ZHANG Chao, WANG Yinmao, WANG Xiang, SUO Tao. Mechanical behaviours of aeronautical inorganic glass at different strain rates[J]. Explosion And Shock Waves, 2018, 38(2): 295-301. doi: 10.11883/bzycj-2016-0186 |
[6] | Xi Xulong, Bai Chunyu, Liu Xiaochuan, Mu Rangke, Wang Jizhen. Dynamic mechanical properties of 2A16-T4 aluminum alloy at wide-ranging strain rates[J]. Explosion And Shock Waves, 2017, 37(5): 871-878. doi: 10.11883/1001-1455(2017)05-0871-08 |
[7] | Guo Chun-huan, Zhou Pei-jun, Lu Zi-chun, Chang Yun-peng, Zou Guang-ping, Jiang Feng-chun. Application of pulse shaping technique in Hopkinson bar experiments[J]. Explosion And Shock Waves, 2015, 35(6): 881-887. doi: 10.11883/1001-1455(2015)06-0881-07 |
[8] | Wang Peng-fei, Xu Song-lin, Li Zhi-bin, Hu Shi-sheng. An experimental study on dynamic mechanical property ofultra-light aluminum foam under high temperatures[J]. Explosion And Shock Waves, 2014, 34(4): 433-438. doi: 10.11883/1001-1455(2014)04-0433-06 |
[9] | WANG Peng-fei, HU Shi-sheng. Mechanicalpropertiesoffoamaluminum withdifferentsizes[J]. Explosion And Shock Waves, 2012, 32(4): 393-398. doi: 10.11883/1001-1455(2012)04-0393-06 |
[10] | REN Xing-tao, ZHOU Ting-qing, ZHONG Fang-ping, HU Yong-le, WANG Wan-peng. Dynamicmechanicalbehaviorofsteel-fiberreactivepowderconcrete[J]. Explosion And Shock Waves, 2011, 31(5): 540-547. doi: 10.11883/1001-1455(2011)05-0540-08 |
[11] | CHEN Rong, LU Fang-yun, LIN Yu-liang, XIA Kai-wen. Applicationsofalaserdisplacementgauge inHopkinsonbarexperiments[J]. Explosion And Shock Waves, 2011, 31(1): 36-42. doi: 10.11883/1001-1455(2011)01-0036-07 |
[12] | TAO Jun-lin, QIN Li-bo, LI Kui, LIU Dan, JIA Bin, CHEN Xiao-wei, CHEN Gang. Experimentalinvestigationondynamiccompressionmechanical performanceofconcreteathightemperature[J]. Explosion And Shock Waves, 2011, 31(1): 101-106. doi: 10.11883/1001-1455(2011)01-0101-06 |
[13] | XIE Ruo-ze, HU Wen-jun, CHEN Cheng-jun, PAN Xiao-xia, HE Peng, ZHANG Fang-ju, CHEN Jie. DynamiccompressivemechanicalpropertiesofV-5Cr-5Ti atroomtemperature[J]. Explosion And Shock Waves, 2010, 30(6): 641-646. doi: 10.11883/1001-1455(2010)06-0641-06 |
[14] | LUO Bin-qiang, HU Shi-sheng. Dynamic mechanical properties of SnAgCu solder[J]. Explosion And Shock Waves, 2009, 29(5): 542-545. doi: 10.11883/1001-1455(2009)05-0542-04 |
[15] | CHEN Cheng-jun, XIE Ruo-ze, ZHANG Fang-ju, ZHAO Ya-bin, LU Zi-xing. An application of Taylor impact experiment to study mechanical behaviors of an aluminum-alloy foam[J]. Explosion And Shock Waves, 2008, 28(2): 166-171. doi: 10.11883/1001-1455(2008)02-0166-06 |
[16] | SHANG Bing, SHENG Jing, WANG Bao-zhen, HU Shi-sheng. Dynamic mechanical behavior and constitutive model of stainless steel[J]. Explosion And Shock Waves, 2008, 28(6): 527-531. doi: 10.11883/1001-1455(2008)06-0527-05 |
[17] | TANG Tie-gang, LI Qing-zhong, SUN Xue-lin, SUN Zhan-feng, JIN Shan, GU Yan. Strain-rate effects of expanding fracture of 45 steel cylinder shells driven by detonation[J]. Explosion And Shock Waves, 2006, 26(2): 129-133. doi: 10.11883/1001-1455(2006)02-0129-05 |
[18] | WANG Zhi-hua, CAO Xiao-qing, MA Hong-wei, ZHAO Long-mao, YANG Gui-tong. Experimental studies on the dynamic compressive properties of open-celled aluminum alloy foams[J]. Explosion And Shock Waves, 2006, 26(1): 46-52. doi: 10.11883/1001-1455(2006)01-0046-07 |
[19] | LI Yu-long, GUO Wei-guo. Miniature-Hopkinson bar technique[J]. Explosion And Shock Waves, 2006, 26(4): 303-308. doi: 10.11883/1001-1455(2006)04-0303-06 |
[20] | LI Yu-long, SUO Tao, GUO Wei-guo, HU Rui, LI Jin-shan, FU Heng-zhi. Determination of dynamic behavior of materials at elevated temperatures and high strain rates using Hopkinson bar[J]. Explosion And Shock Waves, 2005, 25(6): 487-492. doi: 10.11883/1001-1455(2005)06-0487-06 |