Citation: | XIE Yushan, LU Jianhua, XU Songlin, SHU Zaiqin, ZHANG Jinyong. On impact properties of Mo-ZrC gradient metal ceramics[J]. Explosion And Shock Waves, 2023, 43(3): 033101. doi: 10.11883/bzycj-2022-0374 |
[1] |
UDUPA G, RAO S S, GANGADHARAN K V. Functionally graded composite materials: an overview [J]. Procedia Materials Science, 2014, 5: 1291–1299. DOI: 10.1016/j.mspro.2014.07.442.
|
[2] |
SALEH B, JIANG J H, FATHI R, et al. 30 years of functionally graded materials: an overview of manufacturing methods, Applications and Future Challenges [J]. Composites Part B: Engineering, 2020, 201: 108376. DOI: 10.1016/j.compositesb.2020.108376.
|
[3] |
LARSON R A, PALAZOTTO A N, GARDENIER H E. Impact response of titanium and titanium boride monolithic and functionally graded composite plates [J]. AIAA Journal, 2009, 47(3): 676–691. DOI: 10.2514/1.38577.
|
[4] |
QI Q, JI W, LI Q N, et al. Integrated preparation and enhanced performance of high-melting-point ZrC-Mo multilayer graded materials [J]. Ceramics International, 2022, 48(14): 20769–20777. DOI: 10.1016/j.ceramint.2022.04.057.
|
[5] |
LI Y, RAMESH K T, CHIN E S C. Dynamic characterization of layered and graded structures under impulsive loading [J]. International Journal of Solids and structures, 2001, 38(34/35): 6045–6061. DOI: 10.1016/S0020-7683(00)00364-4.
|
[6] |
WU T, HU Y, LENG Y L, et al. In situ observation of fracture in homogeneous and functionally graded 6061Al/SiCp composites [J]. Materials Science and Engineering: A, 2022, 830: 142279. DOI: 10.1016/j.msea.2021.142279.
|
[7] |
JIA M Y, CHEN F, WU Y Q, et al. Microstructure and shear fracture behavior of Mo/AlN/Mo symmetrical compositionally graded materials [J]. Materials Science and Engineering: A, 2022, 834: 142591. DOI: 10.1016/j.msea.2021.142591.
|
[8] |
KEDIR N, KIRK C D, GUO Z R, et al. Real-time visualization of impact damage in monolithic silicon carbide and fibrous silicon carbide ceramic composite [J]. International Journal of Impact Engineering, 2019, 129: 168–179. DOI: 10.1016/j.ijimpeng.2019.01.012.
|
[9] |
ZHU B, CAI Y J. A strain rate-dependent enhanced continuum model for elastic-plastic impact response of metal-ceramic functionally graded composites [J]. International Journal of Impact Engineering, 2019, 133: 103340. DOI: 10.1016/j.ijimpeng.2019.103340.
|
[10] |
MOVAHEDI N, FIEDLER T, TAŞDEMIRCI A, et al. Impact loading of functionally graded metal syntactic foams [J]. Materials Science and Engineering: A, 2022, 839: 142831. DOI: 10.1016/j.msea.2022.142831.
|
[11] |
KOOHBOR B, KIDANE A. Design optimization of continuously and discretely graded foam materials for efficient energy absorption [J]. Materials and Design, 2016, 102: 151–161. DOI: 10.1016/j.matdes.2016.04.031.
|
[12] |
XIAO D B, DONG Z C, LI Y, et al. Compression behavior of the graded metallic auxetic reentrant honeycomb: experiment and finite element analysis [J]. Materials Science and Engineering: A, 2019, 758: 163–171. DOI: 10.1016/j.msea.2019.04.116.
|
[13] |
KOOHBOR B, RAVINDRAN S, KIDANE A. In situ deformation characterization of density-graded foams in quasi-static and impact loading conditions [J]. International Journal of Impact Engineering, 2021, 150: 103820. DOI: 10.1016/j.ijimpeng.2021.103820.
|
[14] |
CHEN X, CHANDRA N. The effect of heterogeneity on plane wave propagation through layered composites [J]. Composites Science and Technology, 2004, 64(10/11): 1477–1493. DOI: 10.1016/j.compscitech.2003.10.024.
|
[15] |
BRUCK H A. A one-dimensional model for designing functionally graded materials to manage stress waves [J]. International Journal of solids and Structures, 2000, 37(44): 6383–6395. DOI: 10.1016/S0020-7683(99)00236-X.
|
[16] |
KATOH Y, VASUDEVAMURTHY G, NOZAWA T, et al. Properties of zirconium carbide for nuclear fuel applications [J]. Journal of Nuclear Materials, 2013, 441(1/2/3): 718–742. DOI: 10.1016/j.jnucmat.2013.05.037.
|
[17] |
LANDWEHR S E, HILMAS G E, FAHRENHOLTZ W G, et al. Microstructure and mechanical characterization of ZrC-Mo cermets produced by hot isostatic pressing [J]. Materials Science and Engineering: A, 2008, 497(1/2): 79–86. DOI: 10.1016/j.msea.2008.07.017.
|
[18] |
CHENG J Y, NEMAT-NASSER S, GUO W G. A unified constitutive model for strain-rate and temperature dependent behavior of molybdenum [J]. Mechanics of Materials, 2001, 33(11): 603–616. DOI: 10.1016/S0167-6636(01)00076-X.
|
[19] |
LI Y, FENG Z Y, HAO L, et al. A review on functionally graded materials and structures via additive manufacturing: from multi-scale design to versatile functional properties [J]. Advanced Materials Technologies, 2020, 5(6): 1900981. DOI: 10.1002/admt.201900981.
|
[20] |
HUANG J Y, LU L, FAN D, et al. Heterogeneity in deformation of granular ceramics under dynamic loading [J]. Scripta Materialia, 2016, 111: 114–118. DOI: 10.1016/j.scriptamat.2015.08.028.
|
[21] |
GRADY D E, KIPP M E. Continuum modelling of explosive fracture in oil shale [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1980, 17(3): 147–157. DOI: 10.1016/0148-9062(80)91361-3.
|
[22] |
徐松林, 刘永贵, 席道瑛. 岩石物理与动力学原理 [M]. 北京: 科学出版社, 2019: 159–163.
XU S L, LIU Y G, XI D Y. Rock physics and dynamics principle [M]. Beijing, China: Science Press, 2019: 159–163.
|
[23] |
李毅, 苗春贺, 徐松林, 等. 梯度密度黏弹性材料的波传播研究 [J]. 爆炸与冲击, 2021, 41(1): 013202. DOI: 10.11883/bzycj-2020-0313.
LI Y, MIAO C H, XU S L, et al. Wave propagation in density-graded viscoelastic material [J]. Explosion and Shock Waves, 2021, 41(1): 013202. DOI: 10.11883/bzycj-2020-0313.
|