Citation: | LIU Zhidong, ZHAO Xiaohua, FANG Hongyuan, WANG Gaohui, SHI Mingsheng. Damage mitigation effect of polymer sacrificial cladding on reinforced concrete slabs under blast loading[J]. Explosion And Shock Waves, 2023, 43(2): 023301. doi: 10.11883/bzycj-2022-0435 |
[1] |
赵春风, 何凯城, 卢欣, 等. 弧形双钢板混凝土组合板抗爆性能数值研究 [J]. 爆炸与冲击, 2022, 42(2): 025101. DOI: 10.11883/bzycj-2021-0205.
ZHAO C F, HE K C, LU X, et al. Numerical study of blast resistance of curved steel-concrete-steel composite slabs [J]. Explosion and Shock Waves, 2022, 42(2): 025101. DOI: 10.11883/bzycj-2021-0205.
|
[2] |
赵春风, 卢欣, 何凯城, 等. 单钢板混凝土剪力墙抗爆性能研究 [J]. 爆炸与冲击, 2020, 40(12): 121403. DOI: 10.11883/bzycj-2020-0058.
ZHAO C F, LU X, HE K C, et al. Blast resistance property of concrete shear wall with single-side steel plate [J]. Explosion and Shock Waves, 2020, 40(12): 121403. DOI: 10.11883/bzycj-2020-0058.
|
[3] |
赵春风, 何凯城, 卢欣, 等. 双钢板混凝土组合板抗爆性能分析 [J]. 爆炸与冲击, 2021, 41(9): 095102. DOI: 10.11883/bzycj-2020-0291.
ZHAO C F, HE K C, LU X, et al. Analysis on the blast resistance of steel concrete composite slab [J]. Explosion and Shock Waves, 2021, 41(9): 095102. DOI: 10.11883/bzycj-2020-0291.
|
[4] |
WU C Q, SHEIKH H. A finite element modelling to investigate the mitigation of blast effects on reinforced concrete panel using foam cladding [J]. International Journal of Impact Engineering, 2013, 55: 24–33. DOI: 10.1016/j.ijimpeng.2012.11.006.
|
[5] |
REBELO H B, LECOMPTE D, CISMASIU C, et al. Experimental and numerical investigation on 3D printed PLA sacrificial honeycomb cladding [J]. International Journal of Impact Engineering, 2019, 131: 162–173. DOI: 10.1016/j.ijimpeng.2019.05.013.
|
[6] |
BOHARA R P, LINFORTH S, GHAZLAN A, et al. Performance of an auxetic honeycomb-core sandwich panel under close-in and far-field detonations of high explosive [J]. Composite Structures, 2022, 280: 114907. DOI: 10.1016/j.compstruct.2021.114907.
|
[7] |
范东宇, 苏彬豪, 彭辉, 等. 多孔泡沫牺牲层的动态压溃及缓冲吸能机理研究 [J]. 力学学报, 2022, 54(6): 1630–1640. DOI: 10.6052/0459-1879-22-047.
FAN D Y, SU B H, PENG H, et al. Research on dynamic crushing and mechanism of mitigation and energy absorption of cellular sacrificial layers [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1630–1640. DOI: 10.6052/0459-1879-22-047.
|
[8] |
ZHAO H L, YU H T, YUAN Y, et al. Blast mitigation effect of the foamed cement-base sacrificial cladding for tunnel structures [J]. Construction and Building Materials, 2015, 94(9): 710–718. DOI: 10.1016/j.conbuildmat.2015.07.076.
|
[9] |
WANG Z Y, DU M R, FANG H Y, et al. Influence of different corrosion environments on mechanical properties of a roadbed rehabilitation polyurethane grouting material under uniaxial compression [J]. Construction and building materials, 2021, 301: 124092. DOI: 10.1016/j.conbuildmat.2021.124092.
|
[10] |
FANG H Y, LI B, WANG F M, et al. The mechanical behaviour of drainage pipeline under traffic load before and after polymer grouting trenchless repairing [J]. Tunnelling and Underground Space Technology, 2018, 74(4): 185–194. DOI: 10.1016/j.tust.2018.01.018.
|
[11] |
王复明, 李曼珺, 方宏远, 等. 黄河大堤高聚物防渗墙稳定性分析 [J]. 人民黄河, 2019, 41(10): 48–52,86. DOI: 10.3969/j.issn.1000-1379.2019.10.009.
WANG F M, LI M J, FANG H Y, et al. Analysis of polymer cut-off wall of yellow river dyke [J]. Yellow River, 2019, 41(10): 48–52,86. DOI: 10.3969/j.issn.1000-1379.2019.10.009.
|
[12] |
FANG H Y, SU Y J, DU X M, et al. Experimental and numerical investigation on repairing effect of polymer grouting for settlement of high-speed railway unballasted track [J]. Applied Sciences, 2019, 9(21): 4496. DOI: 10.3390/app9214496.
|
[13] |
WANG Y H, LU J Y, ZHAI X M, et al. Response of energy absorbing connector with polyurethane foam and multiple pleated plates under impact loading [J]. International Journal of Impact Engineering, 2019, 133: 103356. DOI: 10.1016/j.ijimpeng.2019.103356.
|
[14] |
WANG Y H, ZHANG B Y, LU J Y, et al. Quasi-static crushing behaviour of the energy absorbing connector with polyurethane foam and multiple pleated plates [J]. Engineering Structures, 2020, 211: 110404. DOI: 10.1016/j.engstruct.2020.110404.
|
[15] |
JAMIL A, GUAN Z W, CANTWELL W J, et al. Blast response of aluminium/thermoplastic polyurethane sandwich panels: experimental work and numerical analysis [J]. International Journal of Impact Engineering, 2019, 127: 31–40. DOI: 10.1016/j.ijimpeng.2019.01.003.
|
[16] |
张勇. 聚氨酯泡沫铝复合结构抗爆吸能试验及数值模拟分析 [J]. 爆炸与冲击, 2022, 42(4): 045101. DOI: 10.11883/bzycj-2021-0182.
ZHANG Y. Testingand numerical simulation of the antiknock energy absorption of polyurethane foam aluminum composite structure [J]. Explosion and Shock Waves, 2022, 42(4): 045101. DOI: 10.11883/bzycj-2021-0182.
|
[17] |
杨广栋, 王高辉, 李麒, 等. 爆炸冲击下水底隧道的动态响应及毁伤模式研究 [J]. 振动与冲击, 2022, 41(4): 150–158. DOI: 10.13465/j.cnki.jvs.2022.04.020.
YANG G D, WANG G H, LI Q, et al. Dynamic response and damage patterns of underwater tunnel subjected to blast loads [J]. Journal of Vibration and Shock, 2022, 41(4): 150–158. DOI: 10.13465/j.cnki.jvs.2022.04.020.
|
[18] |
王银, 孔祥振, 方秦, 等. 弹体对混凝土材料先侵彻后爆炸损伤破坏效应的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.
WANG Y, KONG X Z, FANG Q, et al. Numerical investigation on damage and failure of concrete targets subjected to projectile penetration followed by explosion [J]. Explosion and Shock Waves, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.
|
[19] |
甘露, 陈力, 宗周红, 等. 近距离爆炸比例爆距的界定标准及荷载模型 [J]. 爆炸与冲击, 2021, 41(6): 064902. DOI: 10.11883/bzycj-2020-0194.
GAN L, CHEN L, ZONG Z H, et al. Definition of scaled distance of close-in explosion and blast load calculation model [J]. Explosion and Shock Waves, 2021, 41(6): 064902. DOI: 10.11883/bzycj-2020-0194.
|
[1] | GUO Zhiyun, LU Qiang, DING Yang, ZHANG LiangYong, LI Jin. Detonation performance and specific impulse characteristics of a PETN-based ultra-thin sheet explosive[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0132 |
[2] | ZHENG Kai, REN Jiale, SONG Chen, JIA Qianhang, XING Zhixiang. Experimental study on influences of copper foam on explosive characteristics of syngas in a closed pipe[J]. Explosion And Shock Waves, 2024, 44(1): 012102. doi: 10.11883/bzycj-2023-0036 |
[3] | XU Qingtao, MA Honghao, ZHOU Zhangtao, YANG Ke, SHEN Zhaowu. Pressure-time formula for underwater explosion based on pressure-impulse curve[J]. Explosion And Shock Waves, 2024, 44(8): 081445. doi: 10.11883/bzycj-2023-0442 |
[4] | ZHAO Jiaxing, LI Qi, ZHANG Liang, LIU Songhan, JIANG Lin. Experimental study on mitigation effects of water mist on blast wave[J]. Explosion And Shock Waves, 2023, 43(10): 105401. doi: 10.11883/bzycj-2023-0108 |
[5] | KANG Penglin, LI Xiaodong, LIU Wenjie, SUN Yantao, GUAN Yunfei, MA Zhigang, ZHAO Ziwen. Influence of the ignition energy on combustion and explosion characteristics of single-base propellant[J]. Explosion And Shock Waves, 2023, 43(7): 072302. doi: 10.11883/bzycj-2022-0452 |
[6] | DING Yang, LU Qiang, LI Jin, GUO Zhiyun, WANG Zhanjiang. Realization of ultra-low specific impulse loading by synchronous initiation of discrete group of cross ultra-fine explosive rods[J]. Explosion And Shock Waves, 2023, 43(5): 054101. doi: 10.11883/bzycj-2022-0314 |
[7] | CAI Yunxiong, JIANG Xinsheng, WANG Shimao, YU Binbin, WANG Zituo, WANG Chunhui, LI Yuxi. Experimental study of gasoline-air mixture explosion in imitated vertical dome oil tank[J]. Explosion And Shock Waves, 2022, 42(10): 105401. doi: 10.11883/bzycj-2022-0012 |
[8] | HU Zhile, MA Liangliang, WU Hao, FANG Qin. Optimization and verification of mesh size for air shock wave from large distance and near ground explosion[J]. Explosion And Shock Waves, 2022, 42(11): 114201. doi: 10.11883/bzycj-2021-0499 |
[9] | LIU Xin, GU Wenbin, CAI Xinghui, WANG Tao, LIU Jianqing, WANG Zhenxiong, SHEN Huiming. Blast loads on the inner wall of cylindrical explosion containment vessel[J]. Explosion And Shock Waves, 2022, 42(2): 022201. doi: 10.11883/bzycj-2021-0209 |
[10] | ZHANG Kai, DU Saifeng, CHEN Hao, GUO Jin, WANG Jingui, HONG Yidu. Experiments on the effects of venting and nitrogen inerting on hydrogen-air explosions[J]. Explosion And Shock Waves, 2022, 42(12): 125402. doi: 10.11883/bzycj-2021-0459 |
[11] | CHEN Hao, GUO Jin, WANG Jingui, HONG Yidu. Effects of vent burst pressure on hydrogen-methane-air deflagration in a vented duct[J]. Explosion And Shock Waves, 2022, 42(11): 115401. doi: 10.11883/bzycj-2021-0418 |
[12] | ZHU Xiaochao, ZHENG Ligang, YU Shuijun, WANG Yalei, LI Gang, DU Depeng, DOU Zengguo. Effect of blocking ratio on aluminum powder explosion’s characteristicsin vertical duct[J]. Explosion And Shock Waves, 2019, 39(10): 105402. doi: 10.11883/bzycj-2019-0006 |
[13] | JIANG Nan, Bi Yixing, LÜ Dong, WANG Lu, MU Yangyang. Explosion overpressure of hydrogen cloud in catalytic reforming process[J]. Explosion And Shock Waves, 2019, 39(2): 025403. doi: 10.11883/bzycj-2017-0371 |
[14] | FAN Baolong, BAI Chunhua, WANG Bo, GAO Kanghua, LI Bin. Explosion overpressure field of natural gas in a large-scaled confined vessel[J]. Explosion And Shock Waves, 2018, 38(2): 404-408. doi: 10.11883/bzycj-2016-0191 |
[15] | WANG Yanping, ZENG Dan, ZHANG Tonglai, LI Suling, LIU Ying, WANG Yongtao. Heat radiation propagation law of propellant combustion[J]. Explosion And Shock Waves, 2018, 38(1): 212-216. doi: 10.11883/bzycj-2016-0152 |
[16] | Liu Guibing, Hou Hailiang, Zhu Xi, Zhang Guodong. Attenuation of shock wave passing through liquid droplets[J]. Explosion And Shock Waves, 2017, 37(5): 844-852. doi: 10.11883/1001-1455(2017)05-0844-09 |
[17] | Lu Qiang, Wang Zhanjiang, Liu Xiaoxin, Guo Zhiyun, Wu Yujiao. A computational model for impulse coupling between sheet explosive and target[J]. Explosion And Shock Waves, 2017, 37(1): 84-91. doi: 10.11883/1001-1455(2017)01-0084-08 |
[18] | Zhang Peili, Du Yang. Experiments of nitrogen non-premixed suppression of gasoline-air mixture explosion[J]. Explosion And Shock Waves, 2016, 36(3): 347-352. doi: 10.11883/1001-1455(2016)03-0347-06 |
[19] | Wu Songlin, Du Yang, Ou Yihong, Zhang Peili, Liang Jianjun. Experimental study for lateral gasoline-air venting explosion in cylindrical pipeline[J]. Explosion And Shock Waves, 2016, 36(5): 680-687. doi: 10.11883/1001-1455(2016)05-0680-08 |
[20] | FengBin-bin, RuiXiao-ting, YunLai-feng, WangYan. Acomputationalmethodforshapecharacteristicparameters offracturedpropellantingrainform[J]. Explosion And Shock Waves, 2013, 33(3): 292-297. doi: 10.11883/1001-1455(2013)03-0292-05 |