YU De-yun, YANG Jun, CHEN Da-yong, YANG Zhong-hua. Numericalsimulationofreinforcedconcretestructurebasedonseparateelementandcommonnodemode[J]. Explosion And Shock Waves, 2011, 31(4): 349-354. doi: 10.11883/1001-1455(2011)04-0349-06
Citation: KANG Penglin, LI Xiaodong, LIU Wenjie, SUN Yantao, GUAN Yunfei, MA Zhigang, ZHAO Ziwen. Influence of the ignition energy on combustion and explosion characteristics of single-base propellant[J]. Explosion And Shock Waves, 2023, 43(7): 072302. doi: 10.11883/bzycj-2022-0452

Influence of the ignition energy on combustion and explosion characteristics of single-base propellant

doi: 10.11883/bzycj-2022-0452
  • Received Date: 2022-10-19
  • Rev Recd Date: 2023-03-17
  • Available Online: 2023-04-11
  • Publish Date: 2023-07-05
  • A device was developed to experimentally explore the influences of the ignition energy on the combustion and explosion characteristics of single-base propellant. In order to control the ignition energy on the single-base propellant, the black powders with different masses were used to ignite the propellant in the combustion and explosion experiment. By analyzing the ablative traces on the inner wall of the witness plate and the confining steel cylinder, the combustion and explosion development process of the single-base propellant was discussed, and the influences of different ignition energies on the combustion and explosion characteristics of the single-base-propellant were obtained. The results show that, at the beginning of ignition, the combustion reaction of the propellant in the confining steel cylinder is incomplete and the reaction is weak according to the larger ablation trace diameter and lighter ablation trace color. After propagating a distance away from the ignition side, the combustion reaction becomes stronger, but the reaction is still incomplete at this time, smaller ablation diameter and deeper ablation color. While propagating to the end of the confinging steel cylinder, the propellant reaction is complete and the severity of reaction is relatively large, seen from the smaller ablation diameter and the lighter ablation color. At the ignition energies of 4.0, 5.0 and 8.0 kJ, the growth distances from initial ignition to rapid increase of reaction intensity were 54.66, 53.95 and 19.38 cm, respectively. At the ignition energy of 20.0 kJ, the propellant reaction is already strong at the beginning and grows stronger enough to produce obvious dents on the witness plate while propagating to the end. Also at this ignition energy, slow combustion, fast combustion and deflagration occur in the reacion of the propellant, respectively at different positions in the confining steel cylinder. The study enlights that the ignition energy has reference significance for the design of propellant charge.
  • [1]
    BECKSTEAD M W, PUDUPPAKKAM K, THAKRE P, et al. Modeling of combustion and ignition of solid-propellant ingredients [J]. Progress in Energy and Combustion Science, 2007, 33(6): 497–551. DOI: 10.1016/j.pecs.2007.02.003.
    [2]
    AMBEKAR A, KIM M, LEE W H, et al. Characterization of display pyrotechnic propellants: burning rate [J]. Applied Thermal Engineering, 2017, 121: 761–767. DOI: 10.1016/j.applthermaleng.2017.04.097.
    [3]
    王艳平, 曾丹, 张同来, 等. 发射药燃烧热辐射传播规律 [J]. 爆炸与冲击, 2018, 38(1): 212–216. DOI: 10.11883/bzycj-2016-0152.

    WANG Y P, ZENG D, ZHANG T L, et al. Heat radiation propagation law of propellant combustion [J]. Explosion and Shock Waves, 2018, 38(1): 212–216. DOI: 10.11883/bzycj-2016-0152.
    [4]
    廖静林, 江劲勇, 路桂娥, 等. 发射药的火焰燃烧温度计算与测定分析 [J]. 含能材料, 2011, 19(1): 74–77. DOI: 10.3969/j.issn.1006-9941.2011.01.017.

    LIAO J L, JIANG J Y, LU G E, et al. Calculation and measurement analysis of propellant burning temperature [J]. Chinese Journal of Energetic Materials, 2011, 19(1): 74–77. DOI: 10.3969/j.issn.1006-9941.2011.01.017.
    [5]
    高金明, 曾丹, 孙磊, 等. 新型发射药爆炸TNT当量系数的实验研究 [J]. 爆炸与冲击, 2021, 41(10): 102101. DOI: 10.11883/bzycj-2020-0432.

    GAO J M, ZENG D, SUN L, et al. Experimental study on TNT equivalent coefficients for two new kinds of propellants [J]. Explosion and Shock Waves, 2021, 41(10): 102101. DOI: 10.11883/bzycj-2020-0432.
    [6]
    YAMAN H, ÇELIK V, DEĞIRMENCI E. Experimental investigation of the factors affecting the burning rate of solid rocket propellants [J]. Fuel, 2014, 115: 794–803. DOI: 10.1016/j.fuel.2013.05.033.
    [7]
    PILLAI A G S, SANGHAVI R R, DAYANANDAN C R, et al. Studies on RDX particle size in LOVA gun propellant formulations [J]. Propellants, Explosives, Pyrotechnics, 2001, 26(5): 226–228. DOI: 10.1002/1521-4087(200112)26:5<226::AID-PREP226>3.0.CO;2-9.
    [8]
    WANG B B, LIAO X, DELUCA L T, et al. Effects of particle size and content of RDX on burning stability of RDX-based propellants [J]. Defence Technology, 2022, 18(7): 1247–1256. DOI: 10.1016/j.dt.2021.05.009.
    [9]
    张丽娜, 王英博, 南风强, 等. 双层包覆对超多孔发射药燃烧性能的影响 [J]. 含能材料, 2020, 28(6): 498–503. DOI: 10.11943/CJEM2019197.

    ZHANG L N, WANG Y B, NAN F Q, et al. Effect of double-layer coating on combustion performance of super-porous propellant [J]. Chinese Journal of Energetic Materials, 2020, 28(6): 498–503. DOI: 10.11943/CJEM2019197.
    [10]
    杨建兴, 杨伟涛, 马方生, 等. RDX粒度对硝胺发射药力学性能及燃烧性能的影响 [J]. 含能材料, 2017, 25(9): 706–711. DOI: 10.11943/j.issn.1006-9941.2017.09.001.

    YANG J X, YANG W T, MA F S, et al. Effect of RDX particle size on the mechanical and combustion properties of nitramine gun propellant [J]. Chinese Journal of Energetic Materials, 2017, 25(9): 706–711. DOI: 10.11943/j.issn.1006-9941.2017.09.001.
    [11]
    DAMSE R S, SINGH A, SINGH H. High energy propellants for advanced gun ammunition based on RDX, GAP and TAGN compositions [J]. Propellants, Explosives, Pyrotechnics, 2007, 32(1): 52–60. DOI: 10.1002/prep.200700007.
    [12]
    LIANG D L, LIU J Z, CHEN B H, et al. Improvement in energy release properties of boron-based propellant by oxidant coating [J]. Thermochimica Acta, 2016, 638: 58–68. DOI: 10.1016/j.tca.2016.06.017.
    [13]
    张邹邹, 何昌辉, 张衡, 等. NC体系发射药烤燃点火的响应特性 [J]. 爆破器材, 2021, 50(1): 38–43. DOI: 10.3969/j.issn.1001-8352.2021.01.007.

    ZHANG Z Z, HE C H, ZHANG H, et al. Ignition response characteristics of NC propellants under cook-off test [J]. Explosive Materials, 2021, 50(1): 38–43. DOI: 10.3969/j.issn.1001-8352.2021.01.007.
    [14]
    KAKAMI A, HIYAMIZU R, SHUZENJI K, et al. Laser-assisted combustion of solid propellants at low pressures [J]. Journal of Propulsion and Power, 2008, 24(6): 1355–1360. DOI: 10.2514/1.36458.
    [15]
    刘强, 张玉成, 张江波, 等. 等离子体点火对高能硝胺发射药点火性能影响研究 [J]. 火工品, 2014(4): 28–32. DOI: 10.3969/j.issn.1003-1480.2014.04.008.

    LIU Q, ZHANG Y C, ZHANG J B, et al. The influence of plasma ignition on the ignition performance of high-energy nitramine gun propellant [J]. Initiators and Pyrotechnics, 2014(4): 28–32. DOI: 10.3969/j.issn.1003-1480.2014.04.008.
    [16]
    肖正刚, 应三九, 周伟良, 等. 低敏感高能发射药等离子体点火研究动态 [J]. 含能材料, 2008, 16(5): 633–638. DOI: 10.3969/j.issn.1006-9941.2008.05.041.

    XIAO Z G, YING S J, ZHOU W L, et al. Progress in plasma ignition of insensitive high energy propellants [J]. Chinese Journal of Energetic Materials, 2008, 16(5): 633–638. DOI: 10.3969/j.issn.1006-9941.2008.05.041.
    [17]
    LI X W, LI R, JIA S L, et al. Study on the characteristics of different plasma ignition schemes [J]. IEEE Transactions on Plasma Science, 2013, 41(1): 214–219. DOI: 10.1109/TPS.2012.2226061.
    [18]
    LI J Q, LITZINGER T A, THYNELL S T. Plasma ignition and combustion of JA2 propellant [J]. Journal of Propulsion and Power, 2005, 21(1): 44–53. DOI: 10.2514/1.5866.
    [19]
    张江波, 肖霞, 赵煜华, 等. 铜丝钛丝电爆炸对硝胺发射药的点火特性 [J]. 火工品, 2022(5): 24–29. DOI: 10.3969/j.issn.1003-1480.2022.05.006.

    ZHANG J B, XIAO X, ZHAO Y H, et al. Ignition characteristics of nitramine propellant by copper wire and titanium wire electric explosion [J]. Initiators & Pyrotechnics, 2022(5): 24–29. DOI: 10.3969/j.issn.1003-1480.2022.05.006.
    [20]
    KOLECZKO A, EHRHARDT W, KELZENBERG S, et al. Plasma ignition and combustion [J]. Propellants, Explosives, Pyrotechnics, 2001, 26(2): 75–83. DOI: 10.1002/1521-4087(200104)26:2<75::AID-PREP75>3.0.CO;2-Q.
    [21]
    陈伟, 郑宇, 王晓鸣, 等. 点火药药量对爆炸能量输出影响的试验研究 [J]. 爆破器材, 2013, 42(4): 10–13. DOI: 10.3969/j.issn.1001-8352.2013.04.003.

    CHEN W, ZHENG Y, WANG X M, et al. Experimental research on the effect of ignition composition quantity on the explosion energy generation [J]. Explosive Materials, 2013, 42(4): 10–13. DOI: 10.3969/j.issn.1001-8352.2013.04.003.
    [22]
    晁李金, 吕秉峰. 点火药量对发射药燃烧性能的影响 [J]. 兵器装备工程学报, 2016, 37(3): 126–128. DOI: 10.11809/scbgxb2016.03.030.

    CHAO L J, LYU B F. Effect of changing ignition dosages on combustion properties of propellants [J]. Journal of Ordnance Equipment Engineering, 2016, 37(3): 126–128. DOI: 10.11809/scbgxb2016.03.030.
    [23]
    赵宝明, 李先, 刘来东, 等. 适用于RGD7A基三层发射药的点火药 [J]. 爆破器材, 2015, 44(3): 51–54. DOI: 10.3969/j.issn.1001-8352.2015.03.012.

    ZHAO B M, LI X, LIU L D, et al. Ignition powders of the three layers gun propellant based on RGD7A [J]. Explosive Materials, 2015, 44(3): 51–54. DOI: 10.3969/j.issn.1001-8352.2015.03.012.
    [24]
    陈晓明, 赵瑛, 宋长文, 等. 发射药燃烧转爆轰的试验研究 [J]. 火炸药学报, 2012, 35(4): 69–72. DOI: 10.3969/j.issn.1007-7812.2012.04.018.

    CHEN X M, ZHAO Y, SONG C W, et al. Experimental study on deflagration to detonation transition of gun propellants [J]. Chinese Journal of Explosives & Propellants, 2012, 35(4): 69–72. DOI: 10.3969/j.issn.1007-7812.2012.04.018.
    [25]
    周浩然. 黑火药爆炸反应方程及其爆炸热化学指标 [J]. 武汉钢铁学院学报, 1981(2): 50–58.

    ZHOU H R. Explosive reaction equation of black powder and its explosive thermochemical index [J]. Journal of Wuhan University of Science and Technology, 1981(2): 50–58.
    [26]
    VERMA M K. Variable energy flux in turbulence [J]. Journal of Physics A: Mathematical and Theoretical, 2022, 55(1): 013002. DOI: 10.1088/1751-8121/ac354e.
    [27]
    李伟锋, 刘海峰, 龚欣. 工程流体力学 [M]. 2版. 上海: 华东理工大学出版社, 2016: 48–49.

    LI W F, LIU H F, GONG X. Engineering fluid mechanics [M]. 2nd ed. Shanghai: East China University of Science and Technology Press, 2016: 48–49.
  • Relative Articles

    [1]TAN Ye, LI Xuemei, YU Yuying, NAN Xiaolong, GAN Yuanchao, YE Xiangping, HU Jianbo, WANG Qiannan. Yield strength of [100] LiF under shock compression up to 60 GPa[J]. Explosion And Shock Waves, 2022, 42(4): 044102. doi: 10.11883/bzycj-2021-0242
    [2]CHONG Tao, MO Jianjun, ZHENG Xianxu, FU Hua, CAI Jintao. Elastic-plastic transition behaviors of HMX crystal under ramp wave compression[J]. Explosion And Shock Waves, 2021, 41(5): 053101. doi: 10.11883/bzycj-2020-0071
    [3]TANG Changzhou, ZHI Xiaoqi, GAO Feng, YU Yongli. Investigation on tungsten spheres penetrating into pine target covered with body armor[J]. Explosion And Shock Waves, 2021, 41(6): 063302. doi: 10.11883/bzycj-2020-0309
    [4]QIAN Bingwen, ZHOU Gang, LI Jin, LI Yunliang, ZHANG Dezhi, ZHANG Xiangrong, ZHU Yurong, TAN Shushun, JING Jiyong, ZHANG Zidong. Penetration depth of hypervelocity tungsten alloy projectile penetrating concrete target[J]. Explosion And Shock Waves, 2019, 39(8): 083301. doi: 10.11883/bzycj-2019-0141
    [5]LIU Bin, LI Cheng, WANG Ruixing, CAO Qiwei, YANG Xianjun. Electromagnetic pulse driven liner implosion and compression of magnetized target[J]. Explosion And Shock Waves, 2018, 38(3): 688-695. doi: 10.11883/bzycj-2016-0133
    [6]Shi Chunying, Xu Songlin, Shan Junfang, Wang Pengfei, Hu Shisheng. Plastic instability of LY12 aluminum alloy ring under longitudinal impact compression[J]. Explosion And Shock Waves, 2017, 37(3): 471-478. doi: 10.11883/1001-1455(2017)03-0471-08
    [7]Li Tao, Fu Hua, Li Kewu, Gu Yan, Liu Cangli. Deformation with damage and temperature-rise of two types of plastic-bonded explosives under uniaxial compression[J]. Explosion And Shock Waves, 2017, 37(1): 120-125. doi: 10.11883/1001-1455(2017)01-0120-06
    [8]DingYu-qing, TangWen-hui, XuXin, RanXian-wen. Experimentalstudyofmoistureeffectsondynamic compressionpropertiesofunsaturatedclay[J]. Explosion And Shock Waves, 2013, 33(6): 625-630. doi: 10.11883/1001-1455(2013)06-0625-06
    [9]CHEN Xiao-wei, LI Ji-cheng, ZHANG Fang-ju, CHEN Gang. Experimentalresearchonthepenetrationoftungsten-fiber/metallic glass-matrixcompositematerialpenetratorintosteeltarge[J]. Explosion And Shock Waves, 2012, 32(4): 346-354. doi: 10.11883/1001-1455(2012)04-0346-09
    [10]ZHENG Wen, XU Song-lin, HU Shi-sheng. Dynamicmechanicalpropertiesofdrysandunderconfinedcompression[J]. Explosion And Shock Waves, 2011, 31(6): 619-623. doi: 10.11883/1001-1455(2011)06-0619-05
    [11]YE Zhou-yuan, LI Xi-bing, WAN Guo-xiang, ZHOU Zi-long, YIN Tu-bing, HONG Liang. Impact energy-absorption property of rock under tri-axial compression[J]. Explosion And Shock Waves, 2009, 29(4): 419-424. doi: 10.11883/1001-1455(2009)04-0419-06
    [12]WU Xu-tao, HU Shi-sheng, CHEN De-xing, YU Ze-qing. Impact compression experiment of steel fiber reinforced high strength concrete[J]. Explosion And Shock Waves, 2005, 25(2): 125-131. doi: 10.11883/1001-1455(2005)02-0125-07
    [13]CAI Ling-cang, CHEN Qi-feng, GU Yun-jun, ZHOU Xian-ming, JING Fu-qian. Experimental study of light reflectivity of the shocked LY12 aluminum unloading to different gases[J]. Explosion And Shock Waves, 2005, 25(3): 207-221. doi: 10.11883/1001-1455(2005)03-0217-05
  • Cited by

    Periodical cited type(22)

    1. 孔庆亮,夏治园,王刚,钱明渊,刘明锋,杨帆,高朋飞. 高耸钢混结构造粒塔的定向爆破拆除设计及分离式共节点模拟研究. 爆破器材. 2024(01): 57-64 .
    2. 赵盟乔,陈磊,王猛,罗宁,权树恩,刘桐. 复杂环境下爆破拆除130 m多管式套筒烟囱的数值模拟研究. 爆破. 2024(04): 128-135 .
    3. 费鸿禄,张志强,包士杰,张广贝. 框-筒结构楼房折叠爆破拆除数值模拟研究. 爆破. 2023(03): 134-142 .
    4. 高文乐,李元振,赵德龙,张泽华. 多截面承重立柱框架结构爆破拆除数值模拟研究. 爆破. 2021(01): 93-99 .
    5. 高文乐,赵德龙,李元振,张泽华,李坤鹏. 延期时差对多截面承重立柱框架结构拆除爆破效果的影响. 爆破器材. 2021(02): 50-54 .
    6. 谢春明,李明国,黄华江,任艳. 冲击钻孔施工对临近框架桥影响的数值模拟研究. 世界桥梁. 2021(03): 97-102 .
    7. 谢春明,李明国,黄华江,任艳. 冲击钻孔施工对桩基损伤的临近桥梁受力影响研究. 交通科技. 2021(04): 35-39 .
    8. 谢春明,李明国,黄华江,任艳. 冲击钻孔施工对临近框架桥拆除影响的数值模拟分析. 广东公路交通. 2021(04): 134-139 .
    9. 欧阳天云,马建军,池恩安,钟冬望. 剪力墙结构高层住宅楼爆破拆除数值模拟研究. 爆破. 2018(01): 104-108+129 .
    10. 徐长琦. 高层建筑爆破中爆破与塌落振动对比分析. 广东建材. 2018(09): 64-67 .
    11. 何理,钟冬望,涂圣武,陈晨,宋琨. 箍筋对深基坑支撑梁爆破拆除的影响机制. 金属矿山. 2018(08): 45-50 .
    12. 杨小卫,许君风,胡江春. 基于AEM法的爆破拆除倒塌过程的数值模拟. 工程爆破. 2017(02): 11-16 .
    13. 侯舜,刘磊,刘强,王亚,张胜跃. 建(构)筑物拆除爆破塌落触地的试验研究及数值模拟. 世界科技研究与发展. 2016(04): 749-753 .
    14. 李清,杨阳,杨仁树,张迪,王茂源. 内爆法建筑倒塌过程和局部构件破坏数值模拟. 爆破. 2015(01): 32-37 .
    15. 李清,杨阳,杨仁树,张迪,王茂源. 基于MAT96本构模型的钢筋混凝土结构爆破拆除数值模拟. 爆破器材. 2015(01): 41-45 .
    16. 杨阳,杨仁树,李清,张迪,王茂源. 复杂环境下加固型抗震大楼爆破拆除及数值模拟预测. 工程爆破. 2015(04): 24-28+68 .
    17. 冯剑平,黄平明,孙海利,王蒂,朱郑. 钢筋混凝土桥墩爆破拆除数值模拟. 广西大学学报(自然科学版). 2014(01): 214-219 .
    18. 李祥龙,杨阳,栾龙发. 基于整体式模型的钢筋混凝土结构爆破拆除定向倒塌数值模拟. 北京理工大学学报. 2013(12): 1220-1223 .
    19. 言志信,朱辉辉,于换小,刘灿,贺香. 框架结构建筑物爆破拆除数值分析. 爆破. 2013(03): 104-107+155 .
    20. 沈晓松,詹振锵,赵明生,池恩安. 数值模拟在朱旺沱宾馆爆破拆除中的应用. 爆破. 2012(01): 27-30 .
    21. 詹振锵,赵明生,池恩安,王丹丹,和铁柱. 数值模拟在冷却塔爆破拆除中的应用. 爆破. 2012(01): 73-76 .
    22. 佘勇,池恩安,赵明生. 钢筋混凝土双曲拱桥爆破拆除数值模拟. 金属矿山. 2012(07): 50-52+55 .

    Other cited types(13)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (380) PDF downloads(99) Cited by(35)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return