PingQi, MaQin-yong, YuanPu. StressequilibriuminrockspecimenduringtheloadingprocessofSHPBexperiment[J]. Explosion And Shock Waves, 2013, 33(6): 655-661. doi: 10.11883/1001-1455(2013)06-0655-07
Citation: ZHANG Suoshuo, NIE Jianxin, ZHANG Jian, SUN Xiaole, GUO Xueyong, ZHANG Tao. Sympathetic detonation of explosive charge in confined space and its protection[J]. Explosion And Shock Waves, 2023, 43(8): 085101. doi: 10.11883/bzycj-2022-0456

Sympathetic detonation of explosive charge in confined space and its protection

doi: 10.11883/bzycj-2022-0456
  • Received Date: 2022-10-20
  • Rev Recd Date: 2023-02-14
  • Available Online: 2023-02-27
  • Publish Date: 2023-08-31
  • To investigate the sympathetic detonation (SD) response and protection method of shell explosive in the packaging box, the sympathetic detonation experiment of JHL-2 (RDX/Al/binder = 65.5/30/4.5) explosive charges in the packaging box was carried out. The response of the acceptor charges was characterized by the residual of explosive and the breakage of the shell. A calculation model for the sympathetic detonation of shell explosives in packaging box is established, and the numerical simulation of the sympathetic detonation experiment is carried out by using the nonlinear finite element method. The calculation model is verified to be reliable according to the test results. The results of the simulation study show that the main cause for SD of charges in packaging box is the impact of high-speed fragments. According to the experiment result, simulation result and the fragmentation impact initiation criteria of explosive charge, the anti-sympathetic detonation design is implemented for the packaging box. The anti-sympathetic detonation design considering weight and price is as follows: 20 mm wooden partition is set in the adjacent explosive charge, and 2 mm aluminum partition is set on the bottom of the packaging box. A new sympathetic detonation experiment was performed with anti-sympathetic detonation modifications on the packaging box included. The results show that under the unprotected condition, two acceptor charges in the same packaging box with the donor charge and one acceptor charge in the packaging box below the donor charge detonated, and one acceptor charge in the lower packaging box didn’t react; when 20 mm wooden partition was set between adjacent charges and a 2 mm aluminum plate was set on the bottom of the packaging box, only one of the acceptor charges adjacent to the donor charge had a reaction from deflagration to explosion level, and the other three acceptor charges did not react. The research result proves that the installation of partitions inside the packaging box can effectively reduce the possibility of sympathetic detonation, so as to avoid the disastrous consequences caused by sympathetic detonation.
  • [1]
    Hazard assessment test for non-nuclear munitions: MIL-STD-2105E [S]. USA: Department of Defense Test Method Standard, 2022.
    [2]
    Policy for introduction and assessment of insensitive munitions (IM): AOP-39 [S]. NATO Standardization Office (NSO), 2018.
    [3]
    Sympathetic reaction test procedures for munitions: AOP-4396 [S]. NATO Standardization Office (NSO), 2020.
    [4]
    周冰, 李良春, 张会旭. 弹药防殉爆包装技术浅析 [J]. 包装工程, 2018, 39(1): 217–222. DOI: 10.19554/j.cnki.1001-3563.2018.01.043.

    ZHOU B, LI L C, ZHANG H X. Anti-sympathetic detonation packaging of ammunition [J]. Packaging Engineering, 2018, 39(1): 217–222. DOI: 10.19554/j.cnki.1001-3563.2018.01.043.
    [5]
    KUBOTA S, OGATA Y, WADA Y, et al. Observation of shock-induced partial reactions in high explosive [J]. Shock Compression of Condensed Matter, 2007, 955: 955–958. DOI: 10.1063/1.2833287.
    [6]
    陈朗, 王晨, 鲁建英, 等. 炸药殉爆实验和数值模拟 [J]. 北京理工大学学报, 2009, 29(6): 497–500, 524. DOI: 10.15918/j.tbit1001-0645.2009.06.004.

    CHEN L, WANG C, LU J Y, et al. Experiment & simulation of sympathetic detonation tests [J]. Transactions of Beijing Institute of Technology, 2009, 29(6): 497–500, 524. DOI: 10.15918/j.tbit1001-0645.2009.06.004.
    [7]
    王晨, 伍俊英, 陈朗, 等. 壳装炸药殉爆实验和数值模拟 [J]. 爆炸与冲击, 2010, 30(2): 152–158. DOI: 10.11883/1001-1455(2010)02-0152-07.

    WANG C, WU J Y, CHEN L, et al. Experiments and numerical simulations of sympathetic detonation of explosives in shell [J]. Explosion and Shock Waves, 2010, 30(2): 152–158. DOI: 10.11883/1001-1455(2010)02-0152-07.
    [8]
    吉倩, 孔德仁, 高尚, 等. 战斗部殉爆试验多参数存储测试系统 [J]. 测控技术, 2020, 39(3): 84–88. DOI: 10.19708/j.ckjs.2020.03.014.

    JI Q, KONG D R, GAO S, et al. Multi-parameter storage test system for warhead sympathetic detonation experiment [J]. Measurement & Control Technology, 2020, 39(3): 84–88. DOI: 10.19708/j.ckjs.2020.03.014.
    [9]
    胡宏伟, 王健, 卞云龙, 等. 带壳装药水中殉爆特性分析 [J]. 水下无人系统学报, 2022, 30(3): 308–313. DOI: 10.11993/j.issn.2096-3920.2022.03.005.

    HU H W, WANG J, BIAN Y L, et al. Experiments of sympathetic detonation performance of explosives with shell in water [J]. Journal of Unmanned Undersea Systems, 2022, 30(3): 308–313. DOI: 10.11993/j.issn.2096-3920.2022.03.005.
    [10]
    HOWE P M, HUANG Y K, ARBUEKLE A L. A numerical study of detonation propagation between munitions [C]// Proceedings of the 7th Symposium (International) on Detonation. Boston, USA, 1982: 1055–1061.
    [11]
    CHEN L, WANG C, FENG C G, et al. Study on random initiation phenomenon for sympathetic detonation of explosive [J]. Defence Technology, 2013, 9(4): 224–228. DOI: 10.1016/j.dt.2013.12.002.
    [12]
    KIM B, KIM M, SUN T, et al. Simulating sympathetic detonation using the hydrodynamic models and constitutive equations [J]. Journal of Mechanical Science and Technology, 2016, 30(12): 5491–5502. DOI: 10.1007/s12206-016-1117-2.
    [13]
    张立建, 沈飞, 畅博, 等. 典型相似结构柱壳装药殉爆响应数值模拟 [J]. 科学技术与工程, 2021, 21(3): 1003–1010. DOI: 10.3969/j.issn.1671-1815.2021.03.024.

    ZHANG L J, SHEN F, CHANG B, et al. Numerical simulation of the sympathetic detonation response od cylindrical shell charge with typical similar structures [J]. Science Technology and Engineering, 2021, 21(3): 1003–1010. DOI: 10.3969/j.issn.1671-1815.2021.03.024.
    [14]
    田斌, 李如江, 赵家骏, 等. 钢板与泡沫铝复合板弹药包装箱的对比研究 [J]. 兵器装备工程学报, 2019, 40(10): 190–194. DOI: 10.11809/bqzbgcxb2019.10.040.

    TIAN B, LI R J, ZHAO J J, et al. Comparative study of steel plate and foam aluminum composite plate ammunition packaging box [J]. Journal of Ordnance Equipment Engineering, 2019, 40(10): 190–194. DOI: 10.11809/bqzbgcxb2019.10.040.
    [15]
    段晓瑜. 含铝炸药空气中爆炸冲击波特性研究 [D]. 北京: 北京理工大学, 2017: 64. DOI: 10.26948/d.cnki.gbjlu.2017.000047.
    [16]
    LEE E L, TARVER C M. Phenomenological model of shock initiation in heterogeneous explosives [J]. Physics of Fluids. 1980, 23(12): 2362–2372. DOI: 10.1063/1.862940.
    [17]
    LU J P, LOCHERT I J, KENNEDY D L, et al. Simulation of sympathetic reaction tests for PBXN-109 [C]// Proceedings of 13th International Symposium on Detonation. New York, USA, 2006: 1338–1349.
    [18]
    方青, 卫玉章, 张克明, 等. 射弹倾斜撞击带盖板炸药引发爆轰的条件 [J]. 爆炸与冲击, 1997, 17(2): 153–158.

    FANG Q, WEI Y Z, ZHANG K M, et al. On the projectile oblique-impact initiation conditions for explosive covered with a plate [J]. Explosion and Shock Waves, 1997, 17(2): 153–158.
    [19]
    梁斌, 冯高鹏, 魏雪婷. 多枚破片冲击引爆带盖板炸药数值模拟分析 [J]. 弹箭与制导学报, 2013, 33(6): 62–66,69. DOI: 10.15892/j.cnki.djzdxb.2013.06.029.

    LIANG B, FENG G P, WEI X T. Numerical simulation on shock initiation of composition explosive of cover board subjected to multi-fragment [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33(6): 62–66,69. DOI: 10.15892/j.cnki.djzdxb.2013.06.029.
    [20]
    LUECK M, HEINE A, WICKERT M. Numerical analysis of the initiation of high explosives by interacting shock waves due to multiple fragment impact [C]// Proceedings of the 26th International Symposium on Ballistics. Miami, Florida, USA: National Defense Industrial Association, 2011: 73–81.
  • Relative Articles

    [1]YANG Fan, JIANG Chunxue, WANG Yuhui, LI Shiquan, WANG Jianping, ZHANG Guoqing. Influence of kerosene droplet diameters on the flow field of a two-phase rotating detonation engine[J]. Explosion And Shock Waves, 2023, 43(2): 022101. doi: 10.11883/bzycj-2022-0068
    [2]LYU Haicheng, HUANG Xiaolong, LI Ning, WENG Chunsheng. Transmission and reflection characteristics of gaseous detonation waves impacting on gas-solid interface[J]. Explosion And Shock Waves, 2022, 42(11): 112101. doi: 10.11883/bzycj-2021-0523
    [3]HAN Wenhu, ZHANG Bo, WANG Cheng. Progress in studying mechanisms of initiation and propagation for gaseous detonations[J]. Explosion And Shock Waves, 2021, 41(12): 121402. doi: 10.11883/bzycj-2021-0398
    [4]SUN Keming, XIN Liwei, WU Di. Experimental study on fracture mechanism of coal caused by supercritical CO2 explosion[J]. Explosion And Shock Waves, 2018, 38(2): 302-308. doi: 10.11883/bzycj-2016-0230
    [5]YAN Bingjian, ZHANG Bo, GAO Yuan, LYU Shuguang. Investigation of the propagation modes for gaseous detonation at near-limit condition[J]. Explosion And Shock Waves, 2018, 38(6): 1435-1440. doi: 10.11883/bzycj-2017-0167
    [6]Yu Jianliang, Zhang Dong, Yan Xingqing. Influences of blocked obstacles on propagation of gaseous detonation in pipeline[J]. Explosion And Shock Waves, 2017, 37(3): 447-452. doi: 10.11883/1001-1455(2017)03-0447-06
    [7]Zhang Wei, Liu Yunfeng, Teng Honghui, Jiang Zonglin. Auto-ignition effect in gaseous detonation propagation[J]. Explosion And Shock Waves, 2017, 37(2): 274-282. doi: 10.11883/1001-1455(2017)02-0274-09
    [8]DONG Gang, FAN Bao-chun, ZHU Min-ming, CHEN Yi-liang. An application of in situ adaptive tabulation method in numerical simulation of gaseous detonation[J]. Explosion And Shock Waves, 2008, 28(1): 75-79. doi: 10.11883/1001-1455(2008)01-0075-05
    [9]WANG Chang-jian, GUO Chang-ming, XU Sheng-li. Study on acceleration of shock generated by normal reflection of gaseous detonation wave[J]. Explosion And Shock Waves, 2007, 27(2): 143-150. doi: 10.11883/1001-1455(2007)02-0143-08
    [10]WANG Chang-jian, XU Sheng-li, FEI Li-sen. Flow-field visualization for gaseous detonation diffraction experiments[J]. Explosion And Shock Waves, 2006, 26(1): 27-32. doi: 10.11883/1001-1455(2006)01-0027-06
    [11]XIA Chang-jing, ZHOU Kai-yuan. Cellular structure evolution of gaseous detonation in a 90 rectangular bend[J]. Explosion And Shock Waves, 2005, 25(2): 151-156. doi: 10.11883/1001-1455(2005)02-0151-06
  • Cited by

    Periodical cited type(5)

    1. 黄明健,黄贵臣,李论,潘大伟,徐振洋. 冰岩组合体动态力学特性及裂纹演化特征研究. 金属矿山. 2024(03): 68-73 .
    2. 崔年生,危剑林,袁增森,徐振洋,刘鑫,王雪松. 非均质岩石动态断裂损伤细观特征模拟分析. 高压物理学报. 2023(04): 125-136 .
    3. 牛犇,郭璜,滕昭威,周望东,倪吉伦. 饱水石灰岩冲击过程中能量耗散特性. 工程爆破. 2023(06): 90-99 .
    4. 万林林,邓泽辉,邓朝晖,戴鹏. 基于脆性材料的SHPB实验研究与展望. 材料科学与工程学报. 2019(02): 316-324 .
    5. 平琦,吴明静,马芹永,袁璞,张欢. SHPB试验中合理加载波形比选分析. 地下空间与工程学报. 2017(06): 1499-1505 .

    Other cited types(7)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)  / Tables(3)

    Article Metrics

    Article views (482) PDF downloads(120) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return