Citation: | LI Xin, WANG Weili, LIANG Zhengfeng, CHANG Bo, MIAO Runyuan. Fragment dispersion characteristics of the cross-shape built-in fragmentation directional warhead[J]. Explosion And Shock Waves, 2023, 43(8): 083301. doi: 10.11883/bzycj-2022-0464 |
[1] |
KARAS R S. Air force to buy low-collateral-damage variant of small diameter bomb [J]. Inside the Air Force, 2018, 29(26): 13.
|
[2] |
张明明, 魏屹, 万鸣, 等. 近距空中支援作战对武器弹药的需求研究 [J]. 科学技术与工程, 2023, 23(2): 440–447. DOI: 10.12404/j.issn.1671-1815.2023.23.02.00440.
ZHANG M M, WEI Y, WAN M, et al. Requirement of weapon and ammunition in close air support [J]. Science Technology and Engineering, 2023, 23(2): 440–447. DOI: 10.12404/j.issn.1671-1815.2023.23.02.00440.
|
[3] |
刘素梅, 王中, 杨彩宁, 等. 美国研制低附带毁伤DIME弹药 [J]. 飞航导弹, 2009(5): 41–43. DOI: 10.16338/j.issn.1009-1319.2009.05.019.
LIU S M, WANG Z, YANG C N, et al. The United States developed low collateral damage DIME ammunition [J]. Aerodynamic Missile Journal, 2009(5): 41–43. DOI: 10.16338/j.issn.1009-1319.2009.05.019.
|
[4] |
姚文进, 王晓鸣, 李文彬, 等. 低附带毁伤弹药爆炸威力的理论分析与试验研究 [J]. 火炸药学报, 2009, 32(2): 21–24. DOI: 10.3969/j.issn.1007-7812.2009.02.006.
YAO W J, WANG X M, LI W B, et al. Theory analysis and experiment research on blast effect of low collateral damage ammunition [J]. Chinese Journal of Explosives & Propellants, 2009, 32(2): 21–24. DOI: 10.3969/j.issn.1007-7812.2009.02.006.
|
[5] |
李俊承, 樊壮卿, 梁斌, 等. 一种低附带弹药金属颗粒定向加载技术 [J]. 爆炸与冲击, 2018, 38(4): 869–875. DOI: 10.11883/bzycj-2016-0376.
LI J C, FAN Z Q, LIANG B, et al. Experimental study on directed loading metal particles of low collateral damage ammunition [J]. Explosion and Shock Waves, 2018, 38(4): 869–875. DOI: 10.11883/bzycj-2016-0376.
|
[6] |
霍奕宇, 王坚茹, 陈智刚, 等. 碳纤维壳体壁厚对陶瓷球初速及性能的影响? [J]. 爆破器材, 2016, 45(1): 30–33. DOI: 10.3969/j.issn.1001-8352.2016.01.007.
HUO Y Y, WANG J R, CHEN Z G, et al. Influence of thickness of carbon fiber shell on initial velocity and capability of ceramic ball [J]. Explosive Materials, 2016, 45(1): 30–33. DOI: 10.3969/j.issn.1001-8352.2016.01.007.
|
[7] |
FONG R, NG W, ROTTINGER P, et al. Enhanced focused fragmentation warhead study [C]//26th Intentional Symposium on Ballistics. Miami, USA: Intentional Ballistics Society, 2011.
|
[8] |
LLOYD R M. The use of novel penetrators on aimable kinetic energy rod warheads against ballistic missile payloads [C]//20th Intentional Symposium on Ballistics. Orlando, USA: Intentional Ballistics Society, 2002.
|
[9] |
LLOYD R M. Physics of direct hit and near miss warhead technology [M]. Virginia: American Institute of Aeronautics and Astronautics, Inc. , 2001: 4−7.
|
[10] |
邓海, 全嘉林, 梁争峰. 偏心起爆对战斗部装药能量分配增益的影响 [J]. 爆炸与冲击, 2022, 42(5): 052201. DOI: 10.11883/bzycj-2021-0280.
DENG H, QUAN J L, LIANG Z F. Influence of eccentric initiation on energy distribution gain of a warhead charge [J]. Explosion and Shock Waves, 2022, 42(5): 052201. DOI: 10.11883/bzycj-2021-0280.
|
[11] |
苗春壮, 梁增友, 邓德志, 等. 曲率半径对聚焦战斗部影响的数值仿真 [J]. 兵工自动化, 2018, 37(12): 93–96. DOI: 10.7690/bgzdh.2018.12.024.
MIAO C Z, LIANG Z Y, DENG D Z, et al. Numerical simulation influence of curvature radius on focusing warhead [J]. Ordnance Industry Automation, 2018, 37(12): 93–96. DOI: 10.7690/bgzdh.2018.12.024.
|
[12] |
刘伟, 梁争峰, 阮喜军, 等. 波形控制器对杀伤战斗部破片飞散特性影响研究 [J]. 爆炸与冲击, 2023, 43(2): 023203. DOI: 10.11883/bzycj-2022-0202.
LIU W, LIANG Z F, RUAN X J, et al. A study on the influence of wave shape controller on fragment scattering characteristics of fragmentation warhead [J]. Explosion and Shock Waves, 2023, 43(2): 023203. DOI: 10.11883/bzycj-2022-0202.
|
[13] |
蒋建伟, 门建兵, 卢永刚, 等. 动能杆定向抛撒规律的数值模拟 [J]. 爆炸与冲击, 2004, 24(1): 85–89.
JIANG J W, MEN J B, LU Y G, et al. Numerical simulation of KE-rod directional disperse [J]. Explosion and Shock Waves, 2004, 24(1): 85–89.
|
[14] |
李鑫, 王伟力, 梁争峰, 等. 炸药爆轰对金属壳体加速能力研究进展 [J]. 弹箭与制导学报, 2022, 42(2): 7–15. DOI: 10.15892/j.cnki.djzdxb.2022.02.002.
LI X, WANG W L, LIANG Z F, et al. Research progress on acceleration ability of explosive detonation to metal shell [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2022, 42(2): 7–15. DOI: 10.15892/j.cnki.djzdxb.2022.02.002.
|
[15] |
LIAO W, JIANG J W, MEN J B, et al. Effect of the end cap on the fragment velocity distribution of a cylindrical cased charge [J]. Defence Technology, 2021, 17(3): 1052–1061. DOI: 10.1016/j.dt.2020.06.024.
|
[16] |
NING J G, DUAN Y, XU X Z, et al. Velocity characteristics of fragments from prismatic casing under internal explosive loading [J]. International Journal of Impact Engineering, 2017, 109: 29–38. DOI: 10.1016/j.ijimpeng.2017.05.018.
|
[17] |
LI Y, CHENG L, WEN Y Q. Fragment velocity formula for reverse detonation driving with opposite initiation [J]. Propellants, Explosives, Pyrotechnics, 2020, 45(12): 1931–1936. DOI: 10.1002/prep.202000162.
|
[18] |
LI Y, LI X G, XIONG S H, et al. New formula for fragment velocity in the aiming direction of an asymmetrically initiated warhead [J]. Propellants, Explosives, Pyrotechnics, 2018, 43(5): 496–505. DOI: 10.1002/prep.201800003.
|
[19] |
隋树元, 王树山. 终点效应学 [M]. 北京: 国防工业出版社, 2000: 80–82.
SUI S Y, WANG S S. Terminal effects [M]. Beijing: National Defense Industry Press, 2000: 80–82.
|