Volume 43 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
LI Xin, WANG Weili, LIANG Zhengfeng, CHANG Bo, MIAO Runyuan. Fragment dispersion characteristics of the cross-shape built-in fragmentation directional warhead[J]. Explosion And Shock Waves, 2023, 43(8): 083301. doi: 10.11883/bzycj-2022-0464
Citation: LI Xin, WANG Weili, LIANG Zhengfeng, CHANG Bo, MIAO Runyuan. Fragment dispersion characteristics of the cross-shape built-in fragmentation directional warhead[J]. Explosion And Shock Waves, 2023, 43(8): 083301. doi: 10.11883/bzycj-2022-0464

Fragment dispersion characteristics of the cross-shape built-in fragmentation directional warhead

doi: 10.11883/bzycj-2022-0464
  • Received Date: 2022-10-26
  • Rev Recd Date: 2023-05-02
  • Available Online: 2023-05-29
  • Publish Date: 2023-08-31
  • In order to meet the demand of low collateral damage, a cross-shape built-in fragmentation directional warhead was invented, which can select different detonation modes according to the target orientation and then control the radial dispersion characteristics of the fragmentation, in which the formation of anti-personnel fragmentation in the target area to achieve directional damage, while in the non-target area to achieve low collateral damage. Numerical simulation was used to study the fragmentation driving process during the detonation of the directional warhead in two modes: adjacent two-point detonation and adjacent three-point detonation. The characteristic parameters such as fragment dispersion velocity and radial dispersion angle were given at each position. Then, two principle samples were prepared and ground static explosion tests were conducted. The fragment velocity and radial dispersion angle were measured through high-speed photography and the distribution characteristics of fragment perforation on the target plate. The accuracy of the simulation is verified by comparing with the numerical simulation results, based on which the fragmentation velocity correction formula is established by introducing the energy distribution angle, and the parameters of the formula are fitted and analyzed according to the simulation results. The results show that the radial dispersion angle of fragments in the directed killing zone is controlled within 145° and 65° under adjacent two-point initiation and adjacent three-point initiation modes respectively, and the proportion of fragments in this area reaches 50.4% and 43% of the total number, respectively. The fragment velocity shows a graded distribution between 535 and 770 m/s. The penetration rate of 1.5 mm thick Q235A steel plate reaches 94.4% and 84.6% respectively, which can achieve the destruction of light vehicle type targets, while the rest of the area is a low incidental safety zone. The calculation result of fragment velocity based on the energy distribution model is basically consistent with the simulation data. The research results can provide new design ideas to the development of low collateral damage warhead.
  • loading
  • [1]
    KARAS R S. Air force to buy low-collateral-damage variant of small diameter bomb [J]. Inside the Air Force, 2018, 29(26): 13.
    [2]
    张明明, 魏屹, 万鸣, 等. 近距空中支援作战对武器弹药的需求研究 [J]. 科学技术与工程, 2023, 23(2): 440–447. DOI: 10.12404/j.issn.1671-1815.2023.23.02.00440.

    ZHANG M M, WEI Y, WAN M, et al. Requirement of weapon and ammunition in close air support [J]. Science Technology and Engineering, 2023, 23(2): 440–447. DOI: 10.12404/j.issn.1671-1815.2023.23.02.00440.
    [3]
    刘素梅, 王中, 杨彩宁, 等. 美国研制低附带毁伤DIME弹药 [J]. 飞航导弹, 2009(5): 41–43. DOI: 10.16338/j.issn.1009-1319.2009.05.019.

    LIU S M, WANG Z, YANG C N, et al. The United States developed low collateral damage DIME ammunition [J]. Aerodynamic Missile Journal, 2009(5): 41–43. DOI: 10.16338/j.issn.1009-1319.2009.05.019.
    [4]
    姚文进, 王晓鸣, 李文彬, 等. 低附带毁伤弹药爆炸威力的理论分析与试验研究 [J]. 火炸药学报, 2009, 32(2): 21–24. DOI: 10.3969/j.issn.1007-7812.2009.02.006.

    YAO W J, WANG X M, LI W B, et al. Theory analysis and experiment research on blast effect of low collateral damage ammunition [J]. Chinese Journal of Explosives & Propellants, 2009, 32(2): 21–24. DOI: 10.3969/j.issn.1007-7812.2009.02.006.
    [5]
    李俊承, 樊壮卿, 梁斌, 等. 一种低附带弹药金属颗粒定向加载技术 [J]. 爆炸与冲击, 2018, 38(4): 869–875. DOI: 10.11883/bzycj-2016-0376.

    LI J C, FAN Z Q, LIANG B, et al. Experimental study on directed loading metal particles of low collateral damage ammunition [J]. Explosion and Shock Waves, 2018, 38(4): 869–875. DOI: 10.11883/bzycj-2016-0376.
    [6]
    霍奕宇, 王坚茹, 陈智刚, 等. 碳纤维壳体壁厚对陶瓷球初速及性能的影响? [J]. 爆破器材, 2016, 45(1): 30–33. DOI: 10.3969/j.issn.1001-8352.2016.01.007.

    HUO Y Y, WANG J R, CHEN Z G, et al. Influence of thickness of carbon fiber shell on initial velocity and capability of ceramic ball [J]. Explosive Materials, 2016, 45(1): 30–33. DOI: 10.3969/j.issn.1001-8352.2016.01.007.
    [7]
    FONG R, NG W, ROTTINGER P, et al. Enhanced focused fragmentation warhead study [C]//26th Intentional Symposium on Ballistics. Miami, USA: Intentional Ballistics Society, 2011.
    [8]
    LLOYD R M. The use of novel penetrators on aimable kinetic energy rod warheads against ballistic missile payloads [C]//20th Intentional Symposium on Ballistics. Orlando, USA: Intentional Ballistics Society, 2002.
    [9]
    LLOYD R M. Physics of direct hit and near miss warhead technology [M]. Virginia: American Institute of Aeronautics and Astronautics, Inc. , 2001: 4−7.
    [10]
    邓海, 全嘉林, 梁争峰. 偏心起爆对战斗部装药能量分配增益的影响 [J]. 爆炸与冲击, 2022, 42(5): 052201. DOI: 10.11883/bzycj-2021-0280.

    DENG H, QUAN J L, LIANG Z F. Influence of eccentric initiation on energy distribution gain of a warhead charge [J]. Explosion and Shock Waves, 2022, 42(5): 052201. DOI: 10.11883/bzycj-2021-0280.
    [11]
    苗春壮, 梁增友, 邓德志, 等. 曲率半径对聚焦战斗部影响的数值仿真 [J]. 兵工自动化, 2018, 37(12): 93–96. DOI: 10.7690/bgzdh.2018.12.024.

    MIAO C Z, LIANG Z Y, DENG D Z, et al. Numerical simulation influence of curvature radius on focusing warhead [J]. Ordnance Industry Automation, 2018, 37(12): 93–96. DOI: 10.7690/bgzdh.2018.12.024.
    [12]
    刘伟, 梁争峰, 阮喜军, 等. 波形控制器对杀伤战斗部破片飞散特性影响研究 [J]. 爆炸与冲击, 2023, 43(2): 023203. DOI: 10.11883/bzycj-2022-0202.

    LIU W, LIANG Z F, RUAN X J, et al. A study on the influence of wave shape controller on fragment scattering characteristics of fragmentation warhead [J]. Explosion and Shock Waves, 2023, 43(2): 023203. DOI: 10.11883/bzycj-2022-0202.
    [13]
    蒋建伟, 门建兵, 卢永刚, 等. 动能杆定向抛撒规律的数值模拟 [J]. 爆炸与冲击, 2004, 24(1): 85–89.

    JIANG J W, MEN J B, LU Y G, et al. Numerical simulation of KE-rod directional disperse [J]. Explosion and Shock Waves, 2004, 24(1): 85–89.
    [14]
    李鑫, 王伟力, 梁争峰, 等. 炸药爆轰对金属壳体加速能力研究进展 [J]. 弹箭与制导学报, 2022, 42(2): 7–15. DOI: 10.15892/j.cnki.djzdxb.2022.02.002.

    LI X, WANG W L, LIANG Z F, et al. Research progress on acceleration ability of explosive detonation to metal shell [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2022, 42(2): 7–15. DOI: 10.15892/j.cnki.djzdxb.2022.02.002.
    [15]
    LIAO W, JIANG J W, MEN J B, et al. Effect of the end cap on the fragment velocity distribution of a cylindrical cased charge [J]. Defence Technology, 2021, 17(3): 1052–1061. DOI: 10.1016/j.dt.2020.06.024.
    [16]
    NING J G, DUAN Y, XU X Z, et al. Velocity characteristics of fragments from prismatic casing under internal explosive loading [J]. International Journal of Impact Engineering, 2017, 109: 29–38. DOI: 10.1016/j.ijimpeng.2017.05.018.
    [17]
    LI Y, CHENG L, WEN Y Q. Fragment velocity formula for reverse detonation driving with opposite initiation [J]. Propellants, Explosives, Pyrotechnics, 2020, 45(12): 1931–1936. DOI: 10.1002/prep.202000162.
    [18]
    LI Y, LI X G, XIONG S H, et al. New formula for fragment velocity in the aiming direction of an asymmetrically initiated warhead [J]. Propellants, Explosives, Pyrotechnics, 2018, 43(5): 496–505. DOI: 10.1002/prep.201800003.
    [19]
    隋树元, 王树山. 终点效应学 [M]. 北京: 国防工业出版社, 2000: 80–82.

    SUI S Y, WANG S S. Terminal effects [M]. Beijing: National Defense Industry Press, 2000: 80–82.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(5)

    Article Metrics

    Article views (277) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return