Volume 43 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
ZHANG Fengguo, LIU Jun, WANG Yanjin, WANG Pei, ZHENG Hui. Simulation method of spall damage for self-radiation damage aging materials with helium bubbles[J]. Explosion And Shock Waves, 2023, 43(10): 103105. doi: 10.11883/bzycj-2022-0486
Citation: ZHANG Fengguo, LIU Jun, WANG Yanjin, WANG Pei, ZHENG Hui. Simulation method of spall damage for self-radiation damage aging materials with helium bubbles[J]. Explosion And Shock Waves, 2023, 43(10): 103105. doi: 10.11883/bzycj-2022-0486

Simulation method of spall damage for self-radiation damage aging materials with helium bubbles

doi: 10.11883/bzycj-2022-0486
  • Received Date: 2022-11-02
  • Rev Recd Date: 2023-03-20
  • Publish Date: 2023-10-27
  • Under irradiation conditions, a large number of micro-defects such as helium bubbles are produced in some materials, and the size and number density of helium bubbles increase with the increase of irradiation years. The variation of helium bubble distribution not only affects the physical and mechanical properties of the material itself, but also directly affects the distribution characteristics of fracture particle size in the later stage of spallation damage evolution. The evolution process of spallation damage in ductile materials generally includes nucleation, growth and confluence of pores. However, due to the inhibition of existing pores on new nucleation pores, when the initial number density of pores reaches a certain critical value, the calculation of spallation damage may not consider the influence of new nucleation. Based on the characteristics of early damage evolution, a formula for calculating this critical value is given, and based on this formula, the calculation method of spallation damage of plutonium materials irradiated by helium bubbles is further discussed. Then, in view of the difference between the initial damage parameters of the damage model and the real initial damage of the material, we propose a method to determine the damage parameters in the void growth (VG) model. Finally, this problem is analyzed qualitatively by using the experimental results of spallation of conventional aluminum materials containing helium bubbles. The analysis results show that for the calculation of spallation damage of irradiated materials containing helium bubbles, only when the helium bubble size changes little and the helium bubble concentration is lower than the critical helium bubble concentration given in this paper, it is necessary to consider the comprehensive influence of initial helium bubbles and new holes. otherwise, a simple spallation damage model can be adopted, and the nucleation of holes does not need to be calculated.
  • loading
  • [1]
    肖瑶, 黄理, 邱睿智, 等. 钚中氦行为研究进展 [J]. 材料导报A, 2020, 34(6) : 11137–11144. DOI: 10.11896/cldb.19050148.

    XIAO Y, HUANG L, QIU R Z, et al. Progress in the behavior of helium in plutonium [J]. Materials Reports A, 2020, 34(6) : 11137–11144. DOI: 10.11896/cldb.19050148.
    [2]
    MARTZ J C, SCHWARTZ A J. Plutonium: aging mechanisms and weapon pit lifetime assessment [J]. JOM Journal of the Minerals, Metals and Materials Society, 2003, 55: 19–23. DOI: 10.1007/s11837-003-0023-0.
    [3]
    SCHWARTZ A J, WALL M A, ZOCCO T G, et al. Characterization and modeling of helium bubbles in self-irradiated plutonium alloys [J]. Philosophical Magazine, 2005, 85: 479–488. DOI: 10.1080/02678370412331320026.
    [4]
    敖冰云, 汪小琳, 陈丕恒, 等. 钚自辐照老化过程中氦效应理论研究进展 [J]. 原子能科学技术, 2009, 43(12): 37–42. DOI: 10.7538/yzk.2009.43.suppl.0037.

    AO B Y, WANG X L, CHEN P H, et al. Advances in theoretical research of helium effects in plutonium during aging process of self-radiation damage [J]. Atomic Energy Science and Technology, 2009, 43(12): 37–42. DOI: 10.7538/yzk.2009.43.suppl.0037.
    [5]
    余鑫祥, 邓爱红, 程祥, 等. 钚中空位对氦泡生长影响的动力学Monte Carlo研究 [J]. 四川大学学报(自然科学版), 2010, 47(1): 133–136. DOI: 10.3969/j.issn.0490-6756.2010.01.026.

    YU X X, DENG A H, CHEN X, et al. A kinetic Monte Carlo study of the vacancies’ effects on helium bubble growth in plutonium [J]. Journal of Sichuan University (Natural Science Edition) , 2010, 47(1): 133–136. DOI: 10.3969/j.issn.0490-6756.2010.01.026.
    [6]
    VALONE S M, BASKES M I. Self-irradiation cascade simulations in plutonium metal: model behavior at high energy [J]. Journal of Computer-Aided Materials Design , 2007, 14: 357–365. DOI: 10.1007/s10820-007-9049-x.
    [7]
    SHAO J L, WANG P, HE A M, et al. Influence of voids or He bubbles on the spall damage in single crystal Al [J]. Modelling and Simulation in Materials Science and Engineering, 2014, 22(2): 025012. DOI: 10.1088/0965-0393/22/2/025012.
    [8]
    ZHOU T T, HE A M, WANG P. Dynamic evolution of He bubble and its effects on void nucleation-growth and thermomechanical properties in the spallation of aluminum [J]. Journal of Nuclear Materials, 2020, 542: 152496. DOI: 10.1016/j.jnucmat.2020.152496.
    [9]
    万曦, 姚松林, 裴晓阳. 冲击加载下金属铝中氦泡演化行为的相场模拟 [J]. 高压物理学报, 2022, 36(1): 014203. DOI: 10.11858/gywlxb.20210791.

    WAN X, YAO S L, PEI X Y. Phase field modeling of the evolution of helium bubbles in shock loaded aluminum [J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014203. DOI: 10.11858/gywlxb.20210791.
    [10]
    王海燕, 祝文军, 邓小良, 等. 冲击加载下铝中氦泡和孔洞的塑性变形特征研究 [J]. 物理学报, 2009, 58(2): 1154–1159. DOI: 10.3321/j.issn:1000-3290.2009.02.075.

    WANG H Y, ZHU W J, DENG X L, et al. Plastic deformation of cc and void in aluminum under shock loading [J]. Acta Physica Sinica, 2009, 58(2): 1154–1159. DOI: 10.3321/j.issn:1000-3290.2009.02.075.
    [11]
    程扬名, 陈浩, 沈琴, 等. 纯铝中氦泡分布特点的研究 [J]. 原子能科学技术, 2018, 52(3): 385–389. DOI: 10.7538/yzk.2017.youxian.0312.

    CHENG Y M, CHEN H, SHEN Q, et al. Study on distribution characteristics of helium bubble in aluminum [J]. Atomic Energy Science and Technology, 2018, 52(3): 385–389. DOI: 10.7538/yzk.2017.youxian.0312.
    [12]
    祁美兰, 贺红亮 , 王永刚, 等. 高应变率拉伸下纯铝中氦泡长大的动力学研究 [J]. 高压物理学报, 2007, 21(2): 145–150. DOI: 10.11858/gywlxb.2007.02.005.

    QI M L, HE H L, WANG Y G, et al. Dynamic analysis of helium bubble growth in the pure Al under high strain-rate loading [J]. Chinese Journal of High Pressure Physics, 2007, 21(2): 145–150. DOI: 10.11858/gywlxb.2007.02.005.
    [13]
    李英华, 常敬臻, 张林, 等. 氦泡铝的层裂特性实验研究 [J]. 高压物理学报, 2021, 35(5): 054101. DOI: 10.11858/gywlxb.20210770.

    LI Y H, CHANG J Z, ZHANG L, et al. Experimental investigation of spall damage in pure aluminum with helium bubbles [J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054101. DOI: 10.11858/gywlxb.20210770.
    [14]
    张凤国, 胡晓棉, 王裴, 等. 含氦泡金属铝层裂响应的数值分析 [J]. 爆炸与冲击, 2017, 37(4): 699–704. DOI: 10.11883/1001-1455(2017)04-0699-06.

    ZHANG F G, HU X M, WANG P, et al. Numerical analysis of spall response in aluminum with helium bubble [J]. Explosion and Shock Waves, 2017, 37(4): 699–704. DOI: 10.11883/1001-1455(2017)04-0699-06.
    [15]
    GLAM B, STRAUSS M, ELIEZER S, et al. Shock compression and spall formation in aluminum containing helium bubbles at room temperature and near the melting temperature: experiments and simulations [J]. International Journal of Impact Engineering, 2014, 65: 1–12. DOI: 10.1016/j.ijimpeng.2013.10.010.
    [16]
    DURAND O, SOULARD L. Power law and exponential ejecta size distributions from the dynamic fragmentation of shock-loaded Cu and Sn metals under melt conditions [J]. Journal of Applied Physics, 2013, 114: 194902. DOI: 10.1063/1.4832758.
    [17]
    张凤国, 刘军, 何安民, 等. 强冲击加载下延性金属卸载熔化损伤/破碎问题的物理建模及其应用 [J]. 物理学报, 2022, 71(24): 244601. DOI: 10.7498/aps.71.20221340.

    ZHANG F G, LIU J, HE A M, et al. Modelling of spall damage evolution and fragment distributing for melted metals under shock release [J]. Acta Physica Sinica, 2022, 71(24): 244601. DOI: 10.7498/aps.71.20221340.
    [18]
    TRUMEL H, HILD F, ROY G, et al. On probabilistic aspects in the dynamic degradation of ductile materials [J]. Journal of the Mechanics and Physics of Solids, 2009, 57: 1980–1998. DOI: 10.1016/j.jmps.2009.07.001.
    [19]
    JOHNSON J N. Dynamic fracture and spallation in ductile solids [J]. Journal of Applied Physics, 1981, 52(4): 2812–2825. DOI: 10.1063/1.329011.
    [20]
    CARROLL M M, HOLT A C. Static and dynamic pore-collapse relations for ductile porous materials [J]. Journal of Applied Physics, 1972, 43: 1626–1636. DOI: 10.1063/1.1661372.
    [21]
    WU X Y, RAMESH K T, WRIGHT T W. The dynamic growth of a single void in a viscoplastic material under transient hydrostatic loading [J]. Journal of the Mechanics and Physics of Solids, 2003, 51: 1–26. DOI: 10.1016/S0022-5096(02)00079-0.
    [22]
    SEAMAN L, CURRAN D R, SHOCKEY D A. Computational models for ductile and brittle fracture [J]. Journal of Applied Physics, 1976, 47: 4814–4826. DOI: 10.1063/1.322523.
    [23]
    GLAM B, ELIEZER S, MORENO D, et al. Dynamic fracture and spall in aluminum with helium bubbles [J]. International Journal of Fracture, 2010, 163: 217–224. DOI: 10.1007/s10704-009-9437-1.
    [24]
    张凤国, 刘军, 王昆, 等. 孔洞增长层裂损伤模型初始参数的确定方法及其应用 [J]. 物理学报, 2020, 69(20): 204601. DOI: 10.7498/aps.69.20200527.

    ZHANG F G, LIU J, WANG K, et al. Determination method of parameters of void growth damage model and its application to simulation of spall test [J]. Acta Physica Sinica, 2020, 69(20): 204601. DOI: 10.7498/aps.69.20200527.
    [25]
    IKKURTHI V R, CHATURVWDI S. Use of different damage models for simulating impact-driven spallation in metal plates [J]. International Journal of Impact Engineering, 2004, 30 : 275–301. DOI: 10.1016/S0734-743X(03)00070-8.
    [26]
    张凤国, 王裴, 王昆, 等. 关于延性金属材料层裂强度概念的解读 [J]. 防护工程, 2020, 42(5): 33–36

    ZHANG F G, WANG P, WANG K, et al. Interpretation of the concept of spalling strength of ductile metals materials [J]. Protective Engineering, 2020, 42(5): 33–36.
    [27]
    ROMANCHENKO V I, STEPANOV G V. Dependence of the critical stresses on the loading time parameters during spall in copper, aluminum, and steel [J]. Journal of Applied Mechanics Technical Physics, 1980, 21: 555–561 DOI: 10.1007/BF00916495.
    [28]
    MAYER A E, MAYWER P N. Strain rate dependence of spall strength for solid and molten lead and tin [J]. International Journal of Fracture, 2020, 222: 171–195 DOI: 10.1007/s10704-020-00440-8.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (263) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return