Citation: | ZHANG Fengguo, LIU Jun, WANG Yanjin, WANG Pei, ZHENG Hui. Simulation method of spall damage for self-radiation damage aging materials with helium bubbles[J]. Explosion And Shock Waves, 2023, 43(10): 103105. doi: 10.11883/bzycj-2022-0486 |
[1] |
肖瑶, 黄理, 邱睿智, 等. 钚中氦行为研究进展 [J]. 材料导报A, 2020, 34(6) : 11137–11144. DOI: 10.11896/cldb.19050148.
XIAO Y, HUANG L, QIU R Z, et al. Progress in the behavior of helium in plutonium [J]. Materials Reports A, 2020, 34(6) : 11137–11144. DOI: 10.11896/cldb.19050148.
|
[2] |
MARTZ J C, SCHWARTZ A J. Plutonium: aging mechanisms and weapon pit lifetime assessment [J]. JOM Journal of the Minerals, Metals and Materials Society, 2003, 55: 19–23. DOI: 10.1007/s11837-003-0023-0.
|
[3] |
SCHWARTZ A J, WALL M A, ZOCCO T G, et al. Characterization and modeling of helium bubbles in self-irradiated plutonium alloys [J]. Philosophical Magazine, 2005, 85: 479–488. DOI: 10.1080/02678370412331320026.
|
[4] |
敖冰云, 汪小琳, 陈丕恒, 等. 钚自辐照老化过程中氦效应理论研究进展 [J]. 原子能科学技术, 2009, 43(12): 37–42. DOI: 10.7538/yzk.2009.43.suppl.0037.
AO B Y, WANG X L, CHEN P H, et al. Advances in theoretical research of helium effects in plutonium during aging process of self-radiation damage [J]. Atomic Energy Science and Technology, 2009, 43(12): 37–42. DOI: 10.7538/yzk.2009.43.suppl.0037.
|
[5] |
余鑫祥, 邓爱红, 程祥, 等. 钚中空位对氦泡生长影响的动力学Monte Carlo研究 [J]. 四川大学学报(自然科学版), 2010, 47(1): 133–136. DOI: 10.3969/j.issn.0490-6756.2010.01.026.
YU X X, DENG A H, CHEN X, et al. A kinetic Monte Carlo study of the vacancies’ effects on helium bubble growth in plutonium [J]. Journal of Sichuan University (Natural Science Edition) , 2010, 47(1): 133–136. DOI: 10.3969/j.issn.0490-6756.2010.01.026.
|
[6] |
VALONE S M, BASKES M I. Self-irradiation cascade simulations in plutonium metal: model behavior at high energy [J]. Journal of Computer-Aided Materials Design , 2007, 14: 357–365. DOI: 10.1007/s10820-007-9049-x.
|
[7] |
SHAO J L, WANG P, HE A M, et al. Influence of voids or He bubbles on the spall damage in single crystal Al [J]. Modelling and Simulation in Materials Science and Engineering, 2014, 22(2): 025012. DOI: 10.1088/0965-0393/22/2/025012.
|
[8] |
ZHOU T T, HE A M, WANG P. Dynamic evolution of He bubble and its effects on void nucleation-growth and thermomechanical properties in the spallation of aluminum [J]. Journal of Nuclear Materials, 2020, 542: 152496. DOI: 10.1016/j.jnucmat.2020.152496.
|
[9] |
万曦, 姚松林, 裴晓阳. 冲击加载下金属铝中氦泡演化行为的相场模拟 [J]. 高压物理学报, 2022, 36(1): 014203. DOI: 10.11858/gywlxb.20210791.
WAN X, YAO S L, PEI X Y. Phase field modeling of the evolution of helium bubbles in shock loaded aluminum [J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014203. DOI: 10.11858/gywlxb.20210791.
|
[10] |
王海燕, 祝文军, 邓小良, 等. 冲击加载下铝中氦泡和孔洞的塑性变形特征研究 [J]. 物理学报, 2009, 58(2): 1154–1159. DOI: 10.3321/j.issn:1000-3290.2009.02.075.
WANG H Y, ZHU W J, DENG X L, et al. Plastic deformation of cc and void in aluminum under shock loading [J]. Acta Physica Sinica, 2009, 58(2): 1154–1159. DOI: 10.3321/j.issn:1000-3290.2009.02.075.
|
[11] |
程扬名, 陈浩, 沈琴, 等. 纯铝中氦泡分布特点的研究 [J]. 原子能科学技术, 2018, 52(3): 385–389. DOI: 10.7538/yzk.2017.youxian.0312.
CHENG Y M, CHEN H, SHEN Q, et al. Study on distribution characteristics of helium bubble in aluminum [J]. Atomic Energy Science and Technology, 2018, 52(3): 385–389. DOI: 10.7538/yzk.2017.youxian.0312.
|
[12] |
祁美兰, 贺红亮 , 王永刚, 等. 高应变率拉伸下纯铝中氦泡长大的动力学研究 [J]. 高压物理学报, 2007, 21(2): 145–150. DOI: 10.11858/gywlxb.2007.02.005.
QI M L, HE H L, WANG Y G, et al. Dynamic analysis of helium bubble growth in the pure Al under high strain-rate loading [J]. Chinese Journal of High Pressure Physics, 2007, 21(2): 145–150. DOI: 10.11858/gywlxb.2007.02.005.
|
[13] |
李英华, 常敬臻, 张林, 等. 氦泡铝的层裂特性实验研究 [J]. 高压物理学报, 2021, 35(5): 054101. DOI: 10.11858/gywlxb.20210770.
LI Y H, CHANG J Z, ZHANG L, et al. Experimental investigation of spall damage in pure aluminum with helium bubbles [J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054101. DOI: 10.11858/gywlxb.20210770.
|
[14] |
张凤国, 胡晓棉, 王裴, 等. 含氦泡金属铝层裂响应的数值分析 [J]. 爆炸与冲击, 2017, 37(4): 699–704. DOI: 10.11883/1001-1455(2017)04-0699-06.
ZHANG F G, HU X M, WANG P, et al. Numerical analysis of spall response in aluminum with helium bubble [J]. Explosion and Shock Waves, 2017, 37(4): 699–704. DOI: 10.11883/1001-1455(2017)04-0699-06.
|
[15] |
GLAM B, STRAUSS M, ELIEZER S, et al. Shock compression and spall formation in aluminum containing helium bubbles at room temperature and near the melting temperature: experiments and simulations [J]. International Journal of Impact Engineering, 2014, 65: 1–12. DOI: 10.1016/j.ijimpeng.2013.10.010.
|
[16] |
DURAND O, SOULARD L. Power law and exponential ejecta size distributions from the dynamic fragmentation of shock-loaded Cu and Sn metals under melt conditions [J]. Journal of Applied Physics, 2013, 114: 194902. DOI: 10.1063/1.4832758.
|
[17] |
张凤国, 刘军, 何安民, 等. 强冲击加载下延性金属卸载熔化损伤/破碎问题的物理建模及其应用 [J]. 物理学报, 2022, 71(24): 244601. DOI: 10.7498/aps.71.20221340.
ZHANG F G, LIU J, HE A M, et al. Modelling of spall damage evolution and fragment distributing for melted metals under shock release [J]. Acta Physica Sinica, 2022, 71(24): 244601. DOI: 10.7498/aps.71.20221340.
|
[18] |
TRUMEL H, HILD F, ROY G, et al. On probabilistic aspects in the dynamic degradation of ductile materials [J]. Journal of the Mechanics and Physics of Solids, 2009, 57: 1980–1998. DOI: 10.1016/j.jmps.2009.07.001.
|
[19] |
JOHNSON J N. Dynamic fracture and spallation in ductile solids [J]. Journal of Applied Physics, 1981, 52(4): 2812–2825. DOI: 10.1063/1.329011.
|
[20] |
CARROLL M M, HOLT A C. Static and dynamic pore-collapse relations for ductile porous materials [J]. Journal of Applied Physics, 1972, 43: 1626–1636. DOI: 10.1063/1.1661372.
|
[21] |
WU X Y, RAMESH K T, WRIGHT T W. The dynamic growth of a single void in a viscoplastic material under transient hydrostatic loading [J]. Journal of the Mechanics and Physics of Solids, 2003, 51: 1–26. DOI: 10.1016/S0022-5096(02)00079-0.
|
[22] |
SEAMAN L, CURRAN D R, SHOCKEY D A. Computational models for ductile and brittle fracture [J]. Journal of Applied Physics, 1976, 47: 4814–4826. DOI: 10.1063/1.322523.
|
[23] |
GLAM B, ELIEZER S, MORENO D, et al. Dynamic fracture and spall in aluminum with helium bubbles [J]. International Journal of Fracture, 2010, 163: 217–224. DOI: 10.1007/s10704-009-9437-1.
|
[24] |
张凤国, 刘军, 王昆, 等. 孔洞增长层裂损伤模型初始参数的确定方法及其应用 [J]. 物理学报, 2020, 69(20): 204601. DOI: 10.7498/aps.69.20200527.
ZHANG F G, LIU J, WANG K, et al. Determination method of parameters of void growth damage model and its application to simulation of spall test [J]. Acta Physica Sinica, 2020, 69(20): 204601. DOI: 10.7498/aps.69.20200527.
|
[25] |
IKKURTHI V R, CHATURVWDI S. Use of different damage models for simulating impact-driven spallation in metal plates [J]. International Journal of Impact Engineering, 2004, 30 : 275–301. DOI: 10.1016/S0734-743X(03)00070-8.
|
[26] |
张凤国, 王裴, 王昆, 等. 关于延性金属材料层裂强度概念的解读 [J]. 防护工程, 2020, 42(5): 33–36
ZHANG F G, WANG P, WANG K, et al. Interpretation of the concept of spalling strength of ductile metals materials [J]. Protective Engineering, 2020, 42(5): 33–36.
|
[27] |
ROMANCHENKO V I, STEPANOV G V. Dependence of the critical stresses on the loading time parameters during spall in copper, aluminum, and steel [J]. Journal of Applied Mechanics Technical Physics, 1980, 21: 555–561 DOI: 10.1007/BF00916495.
|
[28] |
MAYER A E, MAYWER P N. Strain rate dependence of spall strength for solid and molten lead and tin [J]. International Journal of Fracture, 2020, 222: 171–195 DOI: 10.1007/s10704-020-00440-8.
|