Volume 43 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
HE Zheng, GAO Ziqing, GU Xuan, GAO Zishu. Numerical simulation on the structural response of a torpedo at the moment of vertical water entry[J]. Explosion And Shock Waves, 2023, 43(7): 073303. doi: 10.11883/bzycj-2022-0506
Citation: HE Zheng, GAO Ziqing, GU Xuan, GAO Zishu. Numerical simulation on the structural response of a torpedo at the moment of vertical water entry[J]. Explosion And Shock Waves, 2023, 43(7): 073303. doi: 10.11883/bzycj-2022-0506

Numerical simulation on the structural response of a torpedo at the moment of vertical water entry

doi: 10.11883/bzycj-2022-0506
  • Received Date: 2022-11-12
  • Rev Recd Date: 2023-04-08
  • Available Online: 2023-04-11
  • Publish Date: 2023-07-05
  • The torpedo may be damaged by impact while entering the water. Due to changes in shape, the place where cabins are connected is more stressed and is usually more dangerous. The trajectory of a torpedo is stable when it enters the water vertically for a short time. Based on this, the axial motion and mechanical characteristics of the torpedo’s cabins and connecting parts were studied. Firstly, the arbitrary Lagrangian-Eulerian (ALE) algorithm and penalty function method were used to establish the numerical model of fluid-structure coupling calculation, and its effectiveness was then verified by comparing it with the existing experiment. Next, four sets of solid grids and five sets of fluid grids were established, and the changes of the maximum acceleration and the maximum pressure were analyzed. The independence of the grid was verified through comparison. The vertical water-entry processes of the torpedoes with different head shapes and connection forms were simulated and compared with those of integral torpedoes. The results show that the acceleration increases instantaneously after the torpedo hits the water, then fluctuates in the positive and negative directions around zero and becomes smaller and smaller. The sharper the head, the weaker the impact. The response characteristics of each cabin are different. Since the stress is transmitted backward in the form of waves, the response order of each cabin depends on the distance from the head, and the strength will gradually decrease. The adjacent shells are no longer relatively stationary, and the connector between them will be continuously pulled and pressed, leading to significant changes in their appearances and positions. When the adjacent shells tend to move away from each other, there will be gaps, and the stress of the connectors will also reach the maximum, which is dangerous to the torpedo. It is recommended to add sealing rings or other fixed devices in the project to strengthen the protection of connection parts.
  • loading
  • [1]
    严忠汉. 试论鱼雷入水问题 [J]. 中国造船, 2002, 43(3): 88–93. DOI: 10.3969/j.issn.1000-4882.2002.03.013.

    YAN Z H. A brief neview of water-entry problems for torpedo [J]. Shipbuilding of China, 2002, 43(3): 88–93. DOI: 10.3969/j.issn.1000-4882.2002.03.013.
    [2]
    王永虎, 石秀华. 入水冲击问题研究的现状与进展 [J]. 爆炸与冲击, 2008, 28(3): 276–282. DOI: 10.11883/1001-1455(2008)03-0276-07.

    WANG Y H, SHI X H. Review on research and development of water-entry impact problem [J]. Explosion and Shock Waves, 2008, 28(3): 276–282. DOI: 10.11883/1001-1455(2008)03-0276-07.
    [3]
    王军. 鱼雷入水冲击动力学仿真研究 [D]. 昆明: 昆明理工大学, 2010: 1–2.

    WANG J. The impact dynamics simulation study of torpedo water-entry [D]. Kunming, Yunnan, China: Kunming University of Science and Technology, 2010: 1–2.
    [4]
    WORTHINGTON A M, COLE R S. Impact with a liquid surface studied by the aid of instantaneous photography [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1900, 194: 175–199. DOI: 10.1098/rsta.1900.0016.
    [5]
    VON KARMAN T. The impact of seaplane floats during landing: NACA technical notes 32 [R]. USA: National Advisory Committee for Aero-nautics, 1929. DOI: 10.1115/1.4023571.
    [6]
    WAGNER H. Über stoß-und gleitvorgänge an der oberfläche von flüssigkeiten [J]. Zeitschrift für Angewandte Mathematik und Mechanik, 1932, 12(4): 193–215. DOI: 10.1002/zamm.19320120402.
    [7]
    EROSHIN V A, ROMANENKOV N I, SEREBRYAKOV I V, et al. Hydrodynamic forces produced when blunt bodies strike the surface of a compressible fluid [J]. Fluid Dynamics, 1980, 15(6): 829–835. DOI: 10.1007/BF01096631.
    [8]
    HOWISON S D, OCKENDON J R, WILSON S K. Incompressible water-entry problems at small deadrise angles [J]. Journal of Fluid Mechanics, 1991, 222(1): 215–230. DOI: 10.1017/S0022112091001076.
    [9]
    张伟, 郭子涛, 肖新科, 等. 弹体高速入水特性实验研究 [J]. 爆炸与冲击, 2011, 31(6): 579–584. DOI: 10.11883/1001-1455(2011)06-0579-06.

    ZHANG W, GUO Z T, XIAO X K, et al. Experimental investigations on behaviors of projectile high-speed water entry [J]. Explosion and Shock Waves, 2011, 31(6): 579–584. DOI: 10.11883/1001-1455(2011)06-0579-06.
    [10]
    郭子涛, 张伟, 郭钊, 等. 截卵形弹水平入水的速度衰减及空泡扩展特性 [J]. 爆炸与冲击, 2017, 37(4): 727–733. DOI: 10.11883/1001-1455(2017)04-0727-07.

    GUO Z T, ZHANG W, GUO Z, et al. Characteristics of velocity attenuation and cavity expansion induced by horizontal water-entry of truncated-ogive nosed projectiles [J]. Explosion and Shock Waves, 2017, 37(4): 727–733. DOI: 10.11883/1001-1455(2017)04-0727-07.
    [11]
    黄振贵, 王瑞琦, 陈志华, 等. 90°锥头弹丸不同速度下垂直入水冲击引起的空泡特性 [J]. 爆炸与冲击, 2018, 38(6): 1189–1199. DOI: 10.11883/bzycj-2018-0115.

    HUANG Z G, WANG R Q, CHEN Z H, et al. Experimental study of cavity characteristic induced by vertical water entry impact of a projectile with a 90° cone-shaped head at different velocities [J]. Explosion and Shock Waves, 2018, 38(6): 1189–1199. DOI: 10.11883/bzycj-2018-0115.
    [12]
    侯宇, 黄振贵, 郭则庆, 等. 超空泡射弹小入水角高速斜入水试验研究 [J]. 兵工学报, 2020, 41(2): 332–341. DOI: 10.3969/j.issn.1000-1093.2020.02.015.

    HOU Y, HUANG Z G, GUO Z Q, et al. Experimental investigation on shallow-angle oblique water-entry of a high-speed supercavitating projectile [J]. Acta Armamentarii, 2020, 41(2): 332–341. DOI: 10.3969/j.issn.1000-1093.2020.02.015.
    [13]
    OGER G, DORING M, ALESSANDRINI B, et al. Two-dimensional SPH simulations of wedge water entries [J]. Journal of Computational Physics, 2006, 213(2): 803–822. DOI: 10.1016/j.jcp.2005.09.004.
    [14]
    IRANMANESH A, PASSANDIDEH-FARD M. A three-dimensional numerical approach on water entry of a horizontal circular cylinder using the volume of fluid technique [J]. Ocean Engineering, 2017, 130: 557–566. DOI: 10.1016/j.oceaneng.2016.12.018.
    [15]
    CHAUDHRY A Z, PAN G, SHI Y. Numerical evaluation of the hydrodynamic impact characteristics of the air launched AUV upon water entry [J]. Modern Physics Letters B, 2020, 34(14): 2050149. DOI: 10.1142/S0217984920501493.
    [16]
    黄志刚, 孙铁志, 杨碧野, 等. 平头锥型回转体高速入水结构强度数值分析 [J]. 爆炸与冲击, 2019, 39(4): 043201. DOI: 10.11883/bzycj-2017-0330.

    HUANG Z G, SUN T Z, YANG B Y, et al. Numerical analysis on structural strength of a cone-shaped flatted revolution body during high-speed water-entry [J]. Explosion and Shock Waves, 2019, 39(4): 043201. DOI: 10.11883/bzycj-2017-0330.
    [17]
    孙玉松, 周穗华, 张晓兵, 等. 基于多介质ALE方法的大型弹体入水载荷特性研究 [J]. 海军工程大学学报, 2019, 31(6): 101–106. DOI: 10.7495/j.issn.1009-3486.2019.06.019.

    SUN Y S, ZHOU S H, ZHANG X B, et al. On water-impact load of heavy projectiles base on multi-material ALE method [J]. Journal of Naval University of Engineering, 2019, 31(6): 101–106. DOI: 10.7495/j.issn.1009-3486.2019.06.019.
    [18]
    汪振, 吴茂林, 戴文留. 大口径弹体高速入水载荷特性研究 [J]. 弹道学报, 2020, 32(1): 15–22. DOI: 10.12115/j.issn.1004-499X(2020)01-003.

    WANG Z, WU M L, DAI W L. Study on load characteristics of high-speed water-entry of large caliber projectile [J]. Journal of Ballistics, 2020, 32(1): 15–22. DOI: 10.12115/j.issn.1004-499X(2020)01-003.
    [19]
    汪振, 吴茂林, 孙玉松. 多介质ALE方法流固耦合影响因素及参数分析 [J]. 计算机仿真, 2021, 38(2): 18–23. DOI: 10.3969/j.issn.1006-9348.2021.02.006.

    WANG Z, WU M L, SUN Y S. Influence factors and parameters of fluid-solid coupling in multi-medium ALE method [J]. Computer Simulation, 2021, 38(2): 18–23. DOI: 10.3969/j.issn.1006-9348.2021.02.006.
    [20]
    SHI Y, PAN G, YIM S C, et al. Numerical investigation of hydroelastic water-entry impact dynamics of AUVs [J]. Journal of Fluids and Structures, 2019, 91: 102760–102778. DOI: 10.1016/j.jfluidstructs.2019.102760.
    [21]
    贾鹏. 运动体高速入水冲击载荷数值模拟研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018: 13–82.

    JIA P. Numerical simulation research on high-speed water entry impact [D]. Harbin, Heilongjiang, China: Harbin Institute of Technology, 2018: 13–82.
    [22]
    李刚. 弹体低速入水过程流固耦合特性数值研究 [D]. 哈尔滨: 哈尔滨工程大学, 2020: 60–66.

    LI G. Numerical study of fluid-solid coupling characteristics of a projectile body during low-speed water entry [D]. Harbin, Heilongjiang, China: Harbin Engineering University, 2020: 60–66.
    [23]
    康宝臣, 冯丽娜, 吴琪. 水下航行器舱段连接结构设计 [J]. 机械工程与自动化, 2019(3): 129–130. DOI: 10.3969/j.issn.1672-6413.2019.03.053.

    KANG B C, FENG L N, WU Q. Design of connecting structure for cabins of underwater vehicle [J]. Mechanical Engineering and Automation, 2019(3): 129–130. DOI: 10.3969/j.issn.1672-6413.2019.03.053.
    [24]
    魏海鹏, 史崇镔, 孙铁志, 等. 基于ALE方法的航行体高速入水缓冲降载性能数值计算研究 [J]. 爆炸与冲击, 2021, 41(10): 104201. DOI: 10.11883/bzycj-2020-0461.

    WEI H P, SHI C B, SUN Z T, et al. Numerical study on load-shedding performance of a high-speed water-entry vehicle based on an ALE method [J]. Explosion and Shock Waves, 2021, 41(10): 104201. DOI: 10.11883/bzycj-2020-0461.
    [25]
    SHI Y, PAN G, YAN G X, et al. Numerical study on the cavity characteristics and impact loads of AUV water entry [J]. Applied Ocean Research, 2019, 89: 44–58. DOI: 10.1016/j.apor.2019.05.012.
    [26]
    关文信, 陆庆. 楔环连接方式的水下航行器壳体动态特性分析 [J]. 机械设计, 2021, 38(S1): 120–125. DOI: 10.13841/j.cnki.jxsj.2021.s1.027.

    GUAN W X, LU Q. Dynamic characteristics analysis of underwater vehicle shell with wedge-ring [J]. Journal of Machine Design, 2021, 38(S1): 120–125. DOI: 10.13841/j.cnki.jxsj.2021.s1.027.
    [27]
    黄鹏, 莫军, 徐兵. 楔环连接结构参数化有限元优化设计 [J]. 机械强度, 2005(2): 191–195. DOI: 10.3321/j.issn:1001-9669.2005.02.011.

    HUANG P, MO J, XU B. FEM-based parametric optomozation design of wedge-ring joint structure [J]. Journal of Machinal Strength, 2005(2): 191–195. DOI: 10.3321/j.issn:1001-9669.2005.02.011.
    [28]
    宋保维, 毛昭勇, 潘光, 等. 鱼雷卡箍联接结构模糊可靠性优化设计 [J]. 火力与指挥控制, 2007(11): 121–124. DOI: 10.3969/j.issn.1002-0640.2007.11.035.

    SONG B W, MAO Z Y, PAN G, et al. The fuzzy reliability optimization design of clamp connection in torpedo [J]. Fire Control and Command Control, 2007(11): 121–124. DOI: 10.3969/j.issn.1002-0640.2007.11.035.
    [29]
    徐思博. 回转体高速入水瞬态流固耦合载荷与弹道特性研究 [D]. 哈尔滨: 哈尔滨工程大学, 2019: 26–29.

    XU S B. Study on fluid-structure interactional load and trajectory characteristics of high-speed water entry of projectile [D]. Harbin, Heilongjiang, China: Harbin Engineering University, 2019: 26–29.
    [30]
    张宇文, 宋保维, 王鹏, 等. 鱼雷总体设计理论与方法 [M]. 西安: 西北工业大学出版社, 2015: 203–205.
    [31]
    邹秀亮. Al2O3np/7075铝基复合材料的热处理及触变压缩变形行为研究 [D]. 南昌: 南昌大学, 2017: 1–12.

    ZOU X L. Study on heat treatment and thixotropic compression deformation behavior of Al2O3np/7075 aluminum matrix composites [D]. Nanchang, Jiangxi, China: Nanchang University, 2017: 1–12.
    [32]
    黄鹏, 尹益辉, 莫军. 楔环连接结构两种有限元优化设计方案研究 [J]. 机械工程学报, 2006, 42(8): 205–209. DOI: 10.3321/j.issn:0577-6686.2006.08.036.

    HUANG P, YIN Y H, MO J. Two optimization designs research of wedge-ring joint structure based on FEM [J]. Chinese Journal of Mechanical Engineering, 2006, 42(8): 205–209. DOI: 10.3321/j.issn:0577-6686.2006.08.036.
    [33]
    辛春亮, 朱星宇, 薛再清, 等. 有限元分析常用材料参数手册 [M]. 2版. 北京: 机械工业出版社, 2022: 276–282.
    [34]
    CHAUDHRY A Z, SHI Y, PAN G, et al. Mechanical characterization of flat faced deformable AUV during water entry impact considering the hydroelastic effects [J]. Applied Ocean Research, 2021, 115: 102849–102871. DOI: 10.1016/j.apor.2021.102849.
    [35]
    潘光, 杨悝. 空投鱼雷入水载荷 [J]. 爆炸与冲击, 2014, 34(5): 521–526. DOI: 10.11883/1001-1455(2014)05-0521-06.

    PAN G, YANG K. Impact force encountered by water-entry airborne torpedo [J]. Explosion and Shock Waves, 2014, 34(5): 521–526. DOI: 10.11883/1001-1455(2014)05-0521-06.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article views (296) PDF downloads(123) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return