Citation: | HE Zheng, GAO Ziqing, GU Xuan, GAO Zishu. Numerical simulation on the structural response of a torpedo at the moment of vertical water entry[J]. Explosion And Shock Waves, 2023, 43(7): 073303. doi: 10.11883/bzycj-2022-0506 |
[1] |
严忠汉. 试论鱼雷入水问题 [J]. 中国造船, 2002, 43(3): 88–93. DOI: 10.3969/j.issn.1000-4882.2002.03.013.
YAN Z H. A brief neview of water-entry problems for torpedo [J]. Shipbuilding of China, 2002, 43(3): 88–93. DOI: 10.3969/j.issn.1000-4882.2002.03.013.
|
[2] |
王永虎, 石秀华. 入水冲击问题研究的现状与进展 [J]. 爆炸与冲击, 2008, 28(3): 276–282. DOI: 10.11883/1001-1455(2008)03-0276-07.
WANG Y H, SHI X H. Review on research and development of water-entry impact problem [J]. Explosion and Shock Waves, 2008, 28(3): 276–282. DOI: 10.11883/1001-1455(2008)03-0276-07.
|
[3] |
王军. 鱼雷入水冲击动力学仿真研究 [D]. 昆明: 昆明理工大学, 2010: 1–2.
WANG J. The impact dynamics simulation study of torpedo water-entry [D]. Kunming, Yunnan, China: Kunming University of Science and Technology, 2010: 1–2.
|
[4] |
WORTHINGTON A M, COLE R S. Impact with a liquid surface studied by the aid of instantaneous photography [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1900, 194: 175–199. DOI: 10.1098/rsta.1900.0016.
|
[5] |
VON KARMAN T. The impact of seaplane floats during landing: NACA technical notes 32 [R]. USA: National Advisory Committee for Aero-nautics, 1929. DOI: 10.1115/1.4023571.
|
[6] |
WAGNER H. Über stoß-und gleitvorgänge an der oberfläche von flüssigkeiten [J]. Zeitschrift für Angewandte Mathematik und Mechanik, 1932, 12(4): 193–215. DOI: 10.1002/zamm.19320120402.
|
[7] |
EROSHIN V A, ROMANENKOV N I, SEREBRYAKOV I V, et al. Hydrodynamic forces produced when blunt bodies strike the surface of a compressible fluid [J]. Fluid Dynamics, 1980, 15(6): 829–835. DOI: 10.1007/BF01096631.
|
[8] |
HOWISON S D, OCKENDON J R, WILSON S K. Incompressible water-entry problems at small deadrise angles [J]. Journal of Fluid Mechanics, 1991, 222(1): 215–230. DOI: 10.1017/S0022112091001076.
|
[9] |
张伟, 郭子涛, 肖新科, 等. 弹体高速入水特性实验研究 [J]. 爆炸与冲击, 2011, 31(6): 579–584. DOI: 10.11883/1001-1455(2011)06-0579-06.
ZHANG W, GUO Z T, XIAO X K, et al. Experimental investigations on behaviors of projectile high-speed water entry [J]. Explosion and Shock Waves, 2011, 31(6): 579–584. DOI: 10.11883/1001-1455(2011)06-0579-06.
|
[10] |
郭子涛, 张伟, 郭钊, 等. 截卵形弹水平入水的速度衰减及空泡扩展特性 [J]. 爆炸与冲击, 2017, 37(4): 727–733. DOI: 10.11883/1001-1455(2017)04-0727-07.
GUO Z T, ZHANG W, GUO Z, et al. Characteristics of velocity attenuation and cavity expansion induced by horizontal water-entry of truncated-ogive nosed projectiles [J]. Explosion and Shock Waves, 2017, 37(4): 727–733. DOI: 10.11883/1001-1455(2017)04-0727-07.
|
[11] |
黄振贵, 王瑞琦, 陈志华, 等. 90°锥头弹丸不同速度下垂直入水冲击引起的空泡特性 [J]. 爆炸与冲击, 2018, 38(6): 1189–1199. DOI: 10.11883/bzycj-2018-0115.
HUANG Z G, WANG R Q, CHEN Z H, et al. Experimental study of cavity characteristic induced by vertical water entry impact of a projectile with a 90° cone-shaped head at different velocities [J]. Explosion and Shock Waves, 2018, 38(6): 1189–1199. DOI: 10.11883/bzycj-2018-0115.
|
[12] |
侯宇, 黄振贵, 郭则庆, 等. 超空泡射弹小入水角高速斜入水试验研究 [J]. 兵工学报, 2020, 41(2): 332–341. DOI: 10.3969/j.issn.1000-1093.2020.02.015.
HOU Y, HUANG Z G, GUO Z Q, et al. Experimental investigation on shallow-angle oblique water-entry of a high-speed supercavitating projectile [J]. Acta Armamentarii, 2020, 41(2): 332–341. DOI: 10.3969/j.issn.1000-1093.2020.02.015.
|
[13] |
OGER G, DORING M, ALESSANDRINI B, et al. Two-dimensional SPH simulations of wedge water entries [J]. Journal of Computational Physics, 2006, 213(2): 803–822. DOI: 10.1016/j.jcp.2005.09.004.
|
[14] |
IRANMANESH A, PASSANDIDEH-FARD M. A three-dimensional numerical approach on water entry of a horizontal circular cylinder using the volume of fluid technique [J]. Ocean Engineering, 2017, 130: 557–566. DOI: 10.1016/j.oceaneng.2016.12.018.
|
[15] |
CHAUDHRY A Z, PAN G, SHI Y. Numerical evaluation of the hydrodynamic impact characteristics of the air launched AUV upon water entry [J]. Modern Physics Letters B, 2020, 34(14): 2050149. DOI: 10.1142/S0217984920501493.
|
[16] |
黄志刚, 孙铁志, 杨碧野, 等. 平头锥型回转体高速入水结构强度数值分析 [J]. 爆炸与冲击, 2019, 39(4): 043201. DOI: 10.11883/bzycj-2017-0330.
HUANG Z G, SUN T Z, YANG B Y, et al. Numerical analysis on structural strength of a cone-shaped flatted revolution body during high-speed water-entry [J]. Explosion and Shock Waves, 2019, 39(4): 043201. DOI: 10.11883/bzycj-2017-0330.
|
[17] |
孙玉松, 周穗华, 张晓兵, 等. 基于多介质ALE方法的大型弹体入水载荷特性研究 [J]. 海军工程大学学报, 2019, 31(6): 101–106. DOI: 10.7495/j.issn.1009-3486.2019.06.019.
SUN Y S, ZHOU S H, ZHANG X B, et al. On water-impact load of heavy projectiles base on multi-material ALE method [J]. Journal of Naval University of Engineering, 2019, 31(6): 101–106. DOI: 10.7495/j.issn.1009-3486.2019.06.019.
|
[18] |
汪振, 吴茂林, 戴文留. 大口径弹体高速入水载荷特性研究 [J]. 弹道学报, 2020, 32(1): 15–22. DOI: 10.12115/j.issn.1004-499X(2020)01-003.
WANG Z, WU M L, DAI W L. Study on load characteristics of high-speed water-entry of large caliber projectile [J]. Journal of Ballistics, 2020, 32(1): 15–22. DOI: 10.12115/j.issn.1004-499X(2020)01-003.
|
[19] |
汪振, 吴茂林, 孙玉松. 多介质ALE方法流固耦合影响因素及参数分析 [J]. 计算机仿真, 2021, 38(2): 18–23. DOI: 10.3969/j.issn.1006-9348.2021.02.006.
WANG Z, WU M L, SUN Y S. Influence factors and parameters of fluid-solid coupling in multi-medium ALE method [J]. Computer Simulation, 2021, 38(2): 18–23. DOI: 10.3969/j.issn.1006-9348.2021.02.006.
|
[20] |
SHI Y, PAN G, YIM S C, et al. Numerical investigation of hydroelastic water-entry impact dynamics of AUVs [J]. Journal of Fluids and Structures, 2019, 91: 102760–102778. DOI: 10.1016/j.jfluidstructs.2019.102760.
|
[21] |
贾鹏. 运动体高速入水冲击载荷数值模拟研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018: 13–82.
JIA P. Numerical simulation research on high-speed water entry impact [D]. Harbin, Heilongjiang, China: Harbin Institute of Technology, 2018: 13–82.
|
[22] |
李刚. 弹体低速入水过程流固耦合特性数值研究 [D]. 哈尔滨: 哈尔滨工程大学, 2020: 60–66.
LI G. Numerical study of fluid-solid coupling characteristics of a projectile body during low-speed water entry [D]. Harbin, Heilongjiang, China: Harbin Engineering University, 2020: 60–66.
|
[23] |
康宝臣, 冯丽娜, 吴琪. 水下航行器舱段连接结构设计 [J]. 机械工程与自动化, 2019(3): 129–130. DOI: 10.3969/j.issn.1672-6413.2019.03.053.
KANG B C, FENG L N, WU Q. Design of connecting structure for cabins of underwater vehicle [J]. Mechanical Engineering and Automation, 2019(3): 129–130. DOI: 10.3969/j.issn.1672-6413.2019.03.053.
|
[24] |
魏海鹏, 史崇镔, 孙铁志, 等. 基于ALE方法的航行体高速入水缓冲降载性能数值计算研究 [J]. 爆炸与冲击, 2021, 41(10): 104201. DOI: 10.11883/bzycj-2020-0461.
WEI H P, SHI C B, SUN Z T, et al. Numerical study on load-shedding performance of a high-speed water-entry vehicle based on an ALE method [J]. Explosion and Shock Waves, 2021, 41(10): 104201. DOI: 10.11883/bzycj-2020-0461.
|
[25] |
SHI Y, PAN G, YAN G X, et al. Numerical study on the cavity characteristics and impact loads of AUV water entry [J]. Applied Ocean Research, 2019, 89: 44–58. DOI: 10.1016/j.apor.2019.05.012.
|
[26] |
关文信, 陆庆. 楔环连接方式的水下航行器壳体动态特性分析 [J]. 机械设计, 2021, 38(S1): 120–125. DOI: 10.13841/j.cnki.jxsj.2021.s1.027.
GUAN W X, LU Q. Dynamic characteristics analysis of underwater vehicle shell with wedge-ring [J]. Journal of Machine Design, 2021, 38(S1): 120–125. DOI: 10.13841/j.cnki.jxsj.2021.s1.027.
|
[27] |
黄鹏, 莫军, 徐兵. 楔环连接结构参数化有限元优化设计 [J]. 机械强度, 2005(2): 191–195. DOI: 10.3321/j.issn:1001-9669.2005.02.011.
HUANG P, MO J, XU B. FEM-based parametric optomozation design of wedge-ring joint structure [J]. Journal of Machinal Strength, 2005(2): 191–195. DOI: 10.3321/j.issn:1001-9669.2005.02.011.
|
[28] |
宋保维, 毛昭勇, 潘光, 等. 鱼雷卡箍联接结构模糊可靠性优化设计 [J]. 火力与指挥控制, 2007(11): 121–124. DOI: 10.3969/j.issn.1002-0640.2007.11.035.
SONG B W, MAO Z Y, PAN G, et al. The fuzzy reliability optimization design of clamp connection in torpedo [J]. Fire Control and Command Control, 2007(11): 121–124. DOI: 10.3969/j.issn.1002-0640.2007.11.035.
|
[29] |
徐思博. 回转体高速入水瞬态流固耦合载荷与弹道特性研究 [D]. 哈尔滨: 哈尔滨工程大学, 2019: 26–29.
XU S B. Study on fluid-structure interactional load and trajectory characteristics of high-speed water entry of projectile [D]. Harbin, Heilongjiang, China: Harbin Engineering University, 2019: 26–29.
|
[30] |
张宇文, 宋保维, 王鹏, 等. 鱼雷总体设计理论与方法 [M]. 西安: 西北工业大学出版社, 2015: 203–205.
|
[31] |
邹秀亮. Al2O3np/7075铝基复合材料的热处理及触变压缩变形行为研究 [D]. 南昌: 南昌大学, 2017: 1–12.
ZOU X L. Study on heat treatment and thixotropic compression deformation behavior of Al2O3np/7075 aluminum matrix composites [D]. Nanchang, Jiangxi, China: Nanchang University, 2017: 1–12.
|
[32] |
黄鹏, 尹益辉, 莫军. 楔环连接结构两种有限元优化设计方案研究 [J]. 机械工程学报, 2006, 42(8): 205–209. DOI: 10.3321/j.issn:0577-6686.2006.08.036.
HUANG P, YIN Y H, MO J. Two optimization designs research of wedge-ring joint structure based on FEM [J]. Chinese Journal of Mechanical Engineering, 2006, 42(8): 205–209. DOI: 10.3321/j.issn:0577-6686.2006.08.036.
|
[33] |
辛春亮, 朱星宇, 薛再清, 等. 有限元分析常用材料参数手册 [M]. 2版. 北京: 机械工业出版社, 2022: 276–282.
|
[34] |
CHAUDHRY A Z, SHI Y, PAN G, et al. Mechanical characterization of flat faced deformable AUV during water entry impact considering the hydroelastic effects [J]. Applied Ocean Research, 2021, 115: 102849–102871. DOI: 10.1016/j.apor.2021.102849.
|
[35] |
潘光, 杨悝. 空投鱼雷入水载荷 [J]. 爆炸与冲击, 2014, 34(5): 521–526. DOI: 10.11883/1001-1455(2014)05-0521-06.
PAN G, YANG K. Impact force encountered by water-entry airborne torpedo [J]. Explosion and Shock Waves, 2014, 34(5): 521–526. DOI: 10.11883/1001-1455(2014)05-0521-06.
|