Citation: | GAO Weiting, ZHU Zheming, ZHU Wei, ZOU Ming. Experimental studies on crack propagation behaviors of rock materials under dynamic loads: a review[J]. Explosion And Shock Waves, 2023, 43(8): 081101. doi: 10.11883/bzycj-2022-0526 |
[1] |
AZIZNEJAD S, ESMAIELI K, HADJIGEORGIOU J, et al. Responses of jointed rock masses subjected to impact loading [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(4): 624–634. DOI: 10.1016/j.jrmge.2017.12.006.
|
[2] |
李地元, 万千荣, 朱泉企, 等. 不同加载方式下含预制裂隙岩石力学特性及破坏规律试验研究 [J]. 采矿与安全工程学报, 2021, 38(5): 1025–1035. DOI: 10.13545/j.cnki.jmse.2021.0187.
LI D Y, WAN Q R, ZHU Q Q, et al. Experimental study on mechanical properties and failure behaviour of fractured rocks under different loading methods [J]. Journal of Mining and Safety Engineering, 2021, 38(5): 1025–1035. DOI: 10.13545/j.cnki.jmse.2021.0187.
|
[3] |
王思敬. 论岩石的地质本质性及其岩石力学演绎 [J]. 岩石力学与工程学报, 2009, 28(3): 433–450. DOI: 10.3321/j.issn:1000-6915.2009.03.001.
WANG S J. Geological nature of rock and its deduction for rock mechanics [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(3): 433–450. DOI: 10.3321/j.issn:1000-6915.2009.03.001.
|
[4] |
KONG R, FENG X T, ZHANG X W, et al. Study on crack initiation and damage stress in sandstone under true triaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 106: 117–123. DOI: 10.1016/j.ijrmms.2018.04.019.
|
[5] |
NARA Y, KASHIWAYA K, NISHIDA Y, et al. Influence of surrounding environment on subcritical crack growth in marble [J]. Tectonophysics, 2017, 706/707: 116–128. DOI: 10.1016/j.tecto.2017.04.008.
|
[6] |
SWANSON P L. Subcritical crack growth and other time- and environment-dependent behavior in crustal rocks [J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B6): 4137–4152. DOI: 10.1029/JB089iB06p04137.
|
[7] |
冯夏庭, 丁梧秀. 应力-水流-化学耦合下岩石破裂全过程的细观力学试验 [J]. 岩石力学与工程学报, 2005, 24(9): 1465–1473. DOI: 10.3321/j.issn:1000-6915.2005.09.002.
FENG X T, DING W X. Meso-mechanical experiment of microfracturing process of rock under coupled mechanical-hydrological-chemical environment [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(9): 1465–1473. DOI: 10.3321/j.issn:1000-6915.2005.09.002.
|
[8] |
DONG Y Q, ZHU Z M, ZHOU L, et al. Study of mode Ⅰ crack dynamic propagation behaviour and rock dynamic fracture toughness by using SCT specimens [J]. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41(8): 1810–1822. DOI: 10.1111/ffe.12823.
|
[9] |
YANG R S, DING C X, LI Y L, et al. Crack propagation behavior in slit charge blasting under high static stress conditions [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 119: 117–123. DOI: 10.1016/j.ijrmms.2019.05.002.
|
[10] |
ZHU Z M, WANG C, KANG J M, et al. Study on the mechanism of zonal disintegration around an excavation [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 67: 88–95. DOI: 10.1016/j.ijrmms.2013.12.017.
|
[11] |
王飞, 王蒙, 朱哲明, 等. 冲击荷载下岩石裂纹动态扩展全过程演化规律研究 [J]. 岩石力学与工程学报, 2019, 38(6): 1139–1148. DOI: 10.13722/j.cnki.jrme.2018.1172.
WANG F, WANG M, ZHU Z M, et al. Study on evolution law of rock crack dynamic propagation in complete process under impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1139–1148. DOI: 10.13722/j.cnki.jrme.2018.1172.
|
[12] |
LIANG Z Z, XING H, WANG S Y, et al. A three-dimensional numerical investigation of the fracture of rock specimens containing a pre-existing surface flaw [J]. Computers and Geotechnics, 2012, 45: 19–33. DOI: 10.1016/j.compgeo.2012.04.011.
|
[13] |
PENG J, WONG L N Y, TEH C I, et al. Modeling micro-cracking behavior of Bukit Timah granite using grain-based model [J]. Rock Mechanics and Rock Engineering, 2018, 51(1): 135–154. DOI: 10.1007/s00603-017-1316-x.
|
[14] |
李博, 朱强, 张丰收, 等. 基于矿物晶体模型的非均质性岩石双裂纹扩展规律研究 [J]. 岩石力学与工程学报, 2021, 40(6): 1119–1131. DOI: 10.13722/j.cnki.jrme.2020.0754.
LI B, ZHU Q, ZHANG F S, et al. Study on crack propagation of heterogeneous rocks with double flaws based on grain based model [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1119–1131. DOI: 10.13722/j.cnki.jrme.2020.0754.
|
[15] |
KAWAMOTO T, AYDAN Ö. A review of numerical analysis of tunnels in discontinuous rock masses [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(13): 1377–1391. DOI: 10.1002/(SICI)1096-9853(199911)23:13<1377::AID-NAG932>3.0.CO;2-S.
|
[16] |
BAŽANT Z P. Concrete fracture models: testing and practice [J]. Engineering Fracture Mechanics, 2002, 69(2): 165–205. DOI: 10.1016/S0013-7944(01)00084-4.
|
[17] |
岳中文, 陈彪, 杨仁树. 冲击载荷下岩石材料动态断裂韧性测试研究进展 [J]. 工程爆破, 2015, 21(6): 60–66. DOI: 10.3969/j.issn.1006-7051.2015.06.011.
YUE Z W, CHEN B, YANG R S. Development and new achievements on rock dynamic fracture toughness testing under impact load [J]. Engineering Blasting, 2015, 21(6): 60–66. DOI: 10.3969/j.issn.1006-7051.2015.06.011.
|
[18] |
赵洪宝, 胡桂林, 李伟, 等. 预制裂隙岩石裂纹扩展规律的研究进展与思考 [J]. 地下空间与工程学报, 2016, 12(S2): 899–906.
ZHAO H B, HU G L, LI W, et al. Research progress and thinking on the crack propagation law of pre-fractured rock [J]. Chinese Journal of Underground Space and Engineering, 2016, 12(S2): 899–906.
|
[19] |
LIU Y, DAI F. A review of experimental and theoretical research on the deformation and failure behavior of rocks subjected to cyclic loading [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(5): 1203–1230. DOI: 10.1016/j.jrmge.2021.03.012.
|
[20] |
CERFONTAINE B, COLLIN F. Cyclic and fatigue behaviour of rock materials: review, interpretation and research perspectives [J]. Rock Mechanics and Rock Engineering, 2018, 51(2): 391–414. DOI: 10.1007/s00603-017-1337-5.
|
[21] |
夏开文, 王帅, 徐颖, 等. 深部岩石动力学实验研究进展 [J]. 岩石力学与工程学报, 2021, 40(3): 448–475. DOI: 10.13722/j.cnki.jrme.2020.0343.
XIA K W, WANG S, XU Y, et al. Advances in experimental studies for deep rock dynamics [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(3): 448–475. DOI: 10.13722/j.cnki.jrme.2020.0343.
|
[22] |
ZHANG Q B, ZHAO J. A review of dynamic experimental techniques and mechanical behaviour of rock materials [J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1411–1478. DOI: 10.1007/s00603-013-0463-y.
|
[23] |
XU P, YANG R S, ZUO J J, et al. Research progress of the fundamental theory and technology of rock blasting [J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(4): 705–716. DOI: 10.1007/s12613-022-2464-x.
|
[24] |
JU M H, LI X F, LI X, et al. A review of the effects of weak interfaces on crack propagation in rock: from phenomenon to mechanism [J]. Engineering Fracture Mechanics, 2022, 263: 108297. DOI: 10.1016/j.engfracmech.2022.108297.
|
[25] |
CAO R H, CAO P, LIN H, et al. Crack initiation, propagation, and failure characteristics of jointed rock or rock-like specimens: a review [J]. Advances in Civil Engineering, 2019, 2019: 6975751. DOI: 10.1155/2019/6975751.
|
[26] |
AHMED Z, WANG S H, HASHMI M Z, et al. Causes, characterization, damage models, and constitutive modes for rock damage analysis: a review [J]. Arabian Journal of Geosciences, 2020, 13(16): 806. DOI: 10.1007/s12517-020-05755-3.
|
[27] |
JENABIDEHKORDI A. Computational methods for fracture in rock: a review and recent advances [J]. Frontiers of Structural and Civil Engineering, 2019, 13(2): 273–287. DOI: 10.1007/s11709-018-0459-5.
|
[28] |
SARFARAZI V, HAERI H. A review of experimental and numerical investigations about crack propagation [J]. Computers and Concrete, 2016, 18(2): 235–266. DOI: 10.12989/cac.2016.18.2.235.
|
[29] |
SHU Y, ZHU Z M, WANG M, et al. A modified JH2 model with improved strength model, damage evolution, and equation of state for rock under impact and blasting loads [J]. Mechanics of Materials, 2022, 174: 104454. DOI: 10.1016/j.mechmat.2022.104454.
|
[30] |
SHU Y, ZHU Z M, WANG M, et al. A plastic damage constitutive model for rock-like material focusing on the hydrostatic pressure induced damage and the interaction of tensile and shear damages under impact and blast loads [J]. Computers and Geotechnics, 2022, 150: 104921. DOI: 10.1016/j.compgeo.2022.104921.
|
[31] |
WAN D Y, WANG M, ZHU Z M, et al. Coupled GIMP and CPDI material point method in modelling blast-induced three-dimensional rock fracture [J]. International Journal of Mining Science and Technology, 2022, 32(5): 1097–1114. DOI: 10.1016/j.ijmst.2022.08.012.
|
[32] |
陈鹏宇. PFC2D模拟裂隙岩石裂纹扩展特征的研究现状 [J]. 工程地质学报, 2018, 26(2): 528–539. DOI: 10.13544/j.cnki.jeg.2017-039.
CHEN P Y. Research progress on PFC2D simulation of crack propagation characteristics of cracked rock [J]. Journal of Engineering Geology, 2018, 26(2): 528–539. DOI: 10.13544/j.cnki.jeg.2017-039.
|
[33] |
HUANG S, XIA K, ZHENG H. Observation of microscopic damage accumulation in brittle solids subjected to dynamic compressive loading [J]. Review of Scientific Instruments, 2013, 84(9): 093903. DOI: 10.1063/1.4821497.
|
[34] |
LI J, WANG H C, ZHANG Q B. Progressive damage and fracture of biaxially-confined anisotropic coal under repeated impact loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 149: 104979. DOI: 10.1016/j.ijrmms.2021.104979.
|
[35] |
XING H Z, XIE F, WANG M Y, et al. Experimental investigation of fracture process zone of rock in dynamic mode Ⅰ fracturing and its effect on dynamic crack initiation toughness [J]. Engineering Fracture Mechanics, 2022, 275: 108828. DOI: 10.1016/j.engfracmech.2022.108828.
|
[36] |
张艳博, 徐跃东, 刘祥鑫, 等. 基于CT的岩石三维裂隙定量表征及扩展演化细观研究 [J]. 岩土力学, 2021, 42(10): 2659–2671. DOI: 10.16285/j.rsm.2021.0339.
ZHANG Y B, XU Y D, LIU X X, et al. Quantitative characterization and mesoscopic study of propagation and evolution of three-dimensional rock fractures based on CT [J]. Rock and Soil Mechanics, 2021, 42(10): 2659–2671. DOI: 10.16285/j.rsm.2021.0339.
|
[37] |
GHAMGOSAR M, ERARSLAN N, WILLIAMS D J. Experimental investigation of fracture process zone in rocks damaged under cyclic loadings [J]. Experimental Mechanics, 2017, 57(1): 97–113. DOI: 10.1007/s11340-016-0216-4.
|
[38] |
WANG H, GAO Y T, ZHOU Y. Experimental and numerical studies of brittle rock-like specimens with unfilled cross fissures under uniaxial compression [J]. Theoretical and Applied Fracture Mechanics, 2022, 117: 103167. DOI: 10.1016/j.tafmec.2021.103167.
|
[39] |
YANG S Q, YIN P F, HUANG Y H, et al. Strength, deformability and X-ray micro-CT observations of transversely isotropic composite rock under different confining pressures [J]. Engineering Fracture Mechanics, 2019, 214: 1–20. DOI: 10.1016/j.engfracmech.2019.04.030.
|
[40] |
ZHONG Z, HUANG D, SONG Y X, et al. Three-dimensional cracking and coalescence of two spatial-deflection joints in rock-like specimens under uniaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 159: 105196. DOI: 10.1016/j.ijrmms.2022.105196.
|
[41] |
王伟, 梁渲钰, 张明涛, 等. 动静组合加载下砂岩破坏机制及裂纹密度试验研究 [J]. 岩土力学, 2021, 42(10): 2647–2658. DOI: 10.16285/j.rsm.2021.0095.
WANG W, LIANG X Y, ZHANG M T, et al. Experimental study on failure mechanism and crack density of sandstone under combined dynamic and static loading [J]. Rock and Soil Mechanics, 2021, 42(10): 2647–2658. DOI: 10.16285/j.rsm.2021.0095.
|
[42] |
COHEN A, LEVI-HEVRONI D, FRIDMAN P, et al. In-situ radiography of a split-Hopkinson bar dynamically loaded materials [J]. Journal of Instrumentation, 2019, 14(6): T06008. DOI: 10.1088/1748-0221/14/06/t06008.
|
[43] |
PARAB N D, CLAUS B, HUDSPETH M C, et al. Experimental assessment of fracture of individual sand particles at different loading rates [J]. International Journal of Impact Engineering, 2014, 68: 8–14. DOI: 10.1016/j.ijimpeng.2014.01.003.
|
[44] |
杨仁树, 李炜煜, 李永亮, 等. 3种岩石动态拉伸力学性能试验与对比分析 [J]. 煤炭学报, 2020, 45(9): 3107–3118. DOI: 10.13225/j.cnki.jccs.2019.0853.
YANG R S, LI W Y, LI Y L, et al. Comparative analysis on dynamic tensile mechanical properties of three kinds of rocks [J]. Journal of China Coal Society, 2020, 45(9): 3107–3118. DOI: 10.13225/j.cnki.jccs.2019.0853.
|
[45] |
GAO G, HUANG S, XIA K, et al. Application of digital image correlation (DIC) in dynamic notched semi-circular bend (NSCB) tests [J]. Experimental Mechanics, 2015, 55(1): 95–104. DOI: 10.1007/s11340-014-9863-5.
|
[46] |
ZHANG Q B, ZHAO J. Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60: 423–439. DOI: 10.1016/j.ijrmms.2013.01.005.
|
[47] |
YAN Z L, DAI F, ZHU J B, et al. Dynamic cracking behaviors and energy evolution of multi-flawed rocks under static pre-compression [J]. Rock Mechanics and Rock Engineering, 2021, 54(9): 5117–5139. DOI: 10.1007/s00603-021-02564-2.
|
[48] |
ZHOU T, HAN Z Y, LI D Y, et al. Experimental study of the mechanical and fracture behavior of flawed sandstone subjected to coupled static-repetitive impact loading [J]. Theoretical and Applied Fracture Mechanics, 2022, 117: 103161. DOI: 10.1016/j.tafmec.2021.103161.
|
[49] |
LIU W, HU C Y, LI L K, et al. Experimental study on dynamic notch fracture toughness of V-notched rock specimens under impact loads [J]. Engineering Fracture Mechanics, 2022, 259: 108109. DOI: 10.1016/j.engfracmech.2021.108109.
|
[50] |
XING H Z, ZHANG Q B, RUAN D, et al. Full-field measurement and fracture characterisations of rocks under dynamic loads using high-speed three-dimensional digital image correlation [J]. International Journal of Impact Engineering, 2018, 113: 61–72. DOI: 10.1016/j.ijimpeng.2017.11.011.
|
[51] |
GAO G, YAO W, XIA K, et al. Investigation of the rate dependence of fracture propagation in rocks using digital image correlation (DIC) method [J]. Engineering Fracture Mechanics, 2015, 138: 146–155. DOI: 10.1016/j.engfracmech.2015.02.021.
|
[52] |
JU M H, LI J C, YAO Q L, et al. Rate effect on crack propagation measurement results with crack propagation gauge, digital image correlation, and visual methods [J]. Engineering Fracture Mechanics, 2019, 219: 106537. DOI: 10.1016/j.engfracmech.2019.106537.
|
[53] |
李地元, 胡楚维, 朱泉企. 预制裂隙花岗岩动静组合加载力学特性和破坏规律试验研究 [J]. 岩石力学与工程学报, 2020, 39(6): 1081–1093. DOI: 10.13722/j.cnki.jrme.2019.1089.
LI D Y, HU C W, ZHU Q Q. Experimental study on mechanical properties and failure laws of granite with an artificial flaw under coupled static and dynamic loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(6): 1081–1093. DOI: 10.13722/j.cnki.jrme.2019.1089.
|
[54] |
王奇智, 吴帮标, 刘丰, 等. 预制裂隙类岩石材料板动态压缩破坏试验研究 [J]. 岩石力学与工程学报, 2018, 37(11): 2489–2497. DOI: 10.13722/j.cnki.jrme.2018.0746.
WANG Q Z, WU B B, LIU F, et al. Dynamic failure of manufactured similar rock plate containing a single fissure [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(11): 2489–2497. DOI: 10.13722/j.cnki.jrme.2018.0746.
|
[55] |
FIELD J E, WALLEY S M, PROUD W G, et al. Review of experimental techniques for high rate deformation and shock studies [J]. International Journal of Impact Engineering, 2004, 30(7): 725–775. DOI: 10.1016/j.ijimpeng.2004.03.005.
|
[56] |
RAVI-CHANDAR K. Chapter 8 : crack tip stress and deformation field measurement [M]//RAVI-CHANDAR K. Dynamic Fracture. Oxford: Elsevier, 2004: 107−139. DOI: 10.1016/B978-008044352-2/50008-9.
|
[57] |
励争, 苏先基, 傅缤. 水泥石动态断裂韧性的实验研究 [J]. 力学与实践, 1999, 21(1): 41–44. DOI: 10.3969/j.issn.1000-0879.1999.01.013.
LI Z, SU X J, FU B. Determination of dynamic fracture toughness for cement block [J]. Mechanics and Engineering, 1999, 21(1): 41–44. DOI: 10.3969/j.issn.1000-0879.1999.01.013.
|
[58] |
YANG R S, YUE Z W, SUN Z H, et al. Dynamic fracture behavior of rock under impact load using the caustics method [J]. Mining Science and Technology (China), 2009, 19(1): 79–83. DOI: 10.1016/S1674-5264(09)60015-6.
|
[59] |
XU P, YANG R S, GUO Y, et al. Investigation of the interaction mechanism of two dynamic propagating cracks under blast loading [J]. Engineering Fracture Mechanics, 2022, 259: 108112. DOI: 10.1016/j.engfracmech.2021.108112.
|
[60] |
SALAMI Y, DANO C, HICHER P Y. Infrared thermography of rock fracture [J]. Géotechnique Letters, 2017, 7(1): 36–40. DOI: 10.1680/jgele.16.00131.
|
[61] |
LIU J, YANG F, XU X. Experimental on infrared radiation characteristics of high strength concrete during fracturing process [J]. Materials Research Innovations, 2015, 19(S5): 1107–1111. DOI: 10.1179/1432891714Z.0000000001258.
|
[62] |
YI W, RAO Q H, LI Z, et al. A new measurement method of crack propagation rate for brittle rock under THMC coupling condition [J]. Transactions of Nonferrous Metals Society of China, 2019, 29(8): 1728–1736. DOI: 10.1016/s1003-6326(19)65080-6.
|
[63] |
DONG Y Q, ZHU Z M, REN L, et al. Crack dynamic propagation properties and arrest mechanism under impact loading [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(6): 1171–1184. DOI: 10.1016/j.jrmge.2020.01.008.
|
[64] |
GAO W T, ZHU Z M, YING P, et al. Study on dynamic fracture properties of sandstone under the effect of high-temperature using large-scale sample [J]. Theoretical and Applied Fracture Mechanics, 2022, 121: 103550. DOI: 10.1016/j.tafmec.2022.103550.
|
[65] |
ZHOU L, MA L J, ZHU Z M, et al. Study of the coupling effect of elliptical cavities and cracks on tunnel stability under dynamic loads [J]. Theoretical and Applied Fracture Mechanics, 2022, 121: 103502. DOI: 10.1016/j.tafmec.2022.103502.
|
[66] |
YING P, ZHU Z M, WANG F, et al. The characteristics of dynamic fracture toughness and energy release rate of rock under impact [J]. Measurement, 2019, 147: 106884. DOI: 10.1016/j.measurement.2019.106884.
|
[67] |
GAO W T, ZHU Z M, WANG M, et al. Influence of the interlaced holes on crack propagation behavior under impact loads [J]. International Journal of Impact Engineering, 2022, 163: 104178. DOI: 10.1016/j.ijimpeng.2022.104178.
|
[68] |
LOCKNER D. The role of acoustic emission in the study of rock fracture [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30(7): 883–899. DOI: 10.1016/0148-9062(93)90041-B.
|
[69] |
YANG J, MU Z L, YANG S Q. Experimental study of acoustic emission multi-parameter information characterizing rock crack development [J]. Engineering Fracture Mechanics, 2020, 232: 107045. DOI: 10.1016/j.engfracmech.2020.107045.
|
[70] |
WANG Y Y, DENG H C, DENG Y, et al. Study on crack dynamic evolution and damage-fracture mechanism of rock with pre-existing cracks based on acoustic emission location [J]. Journal of Petroleum Science and Engineering, 2021, 201: 108420. DOI: 10.1016/j.petrol.2021.108420.
|
[71] |
张茹, 谢和平, 刘建锋, 等. 单轴多级加载岩石破坏声发射特性试验研究 [J]. 岩石力学与工程学报, 2006, 25(12): 2584–2588. DOI: 10.3321/j.issn:1000-6915.2006.12.028.
ZHANG R, XIE H P, LIU J F, et al. Experimental study on acoustic emission characteristics of rock failure under uniaxial multilevel loadings [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(12): 2584–2588. DOI: 10.3321/j.issn:1000-6915.2006.12.028.
|
[72] |
WANG Z H, LI Y, CAI W B, et al. Crack propagation process and acoustic emission characteristics of rock-like specimens with double parallel flaws under uniaxial compression [J]. Theoretical and Applied Fracture Mechanics, 2021, 114: 102983. DOI: 10.1016/j.tafmec.2021.102983.
|
[73] |
SHI Z M, LI J T, WANG J. Effect of creep load on fatigue behavior and acoustic emission characteristics of sandstone containing pre-existing crack during fatigue loading [J]. Theoretical and Applied Fracture Mechanics, 2022, 119: 103296. DOI: 10.1016/j.tafmec.2022.103296.
|
[74] |
LIU L W, LI H B, LI X F. A state-of-the-art review of mechanical characteristics and cracking processes of pre-cracked rocks under quasi-static compression [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(6): 2034–2057. DOI: 10.1016/j.jrmge.2022.03.013.
|
[75] |
ZHANG J Z, ZHOU X P. Fracture process zone (FPZ) in quasi-brittle materials: review and new insights from flawed granite subjected to uniaxial stress [J]. Engineering Fracture Mechanics, 2022, 274: 108795. DOI: 10.1016/j.engfracmech.2022.108795.
|
[76] |
LI J, ZHAO J, WANG H C, et al. Fracturing behaviours and AE signatures of anisotropic coal in dynamic Brazilian tests [J]. Engineering Fracture Mechanics, 2021, 252: 107817. DOI: 10.1016/j.engfracmech.2021.107817.
|
[77] |
WANG H C, ZHAO J, LI J, et al. Fracturing and AE characteristics of matrix-inclusion rock types under dynamic Brazilian testing [J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 157: 105164. DOI: 10.1016/j.ijrmms.2022.105164.
|
[78] |
CAI M, KAISER P K, SUORINENI F, et al. A study on the dynamic behavior of the Meuse/Haute-Marne argillite [J]. Physics and Chemistry of the Earth, Parts A/B/C, 2007, 32(8): 907–916. DOI: 10.1016/j.pce.2006.03.007.
|
[79] |
KHANDOUZI G, MEMARIAN H, KHOSRAVI M H. Development of a new experimental technique for dynamic fracture toughness measurement of rocks using drop weight test [J]. Joural of Mining and Environment, 2020, 11(3): 909–920. DOI: 10.22044/jme.2020.9818.1903.
|
[80] |
SUN B, LIU S, ZENG S, et al. Dynamic characteristics and fractal representations of crack propagation of rock with different fissures under multiple impact loadings [J]. Scientific Reports, 2021, 11(1): 13071. DOI: 10.1038/s41598-021-92277-x.
|
[81] |
YANG S L, YUE H, CHEN X L, et al. Experimental study on damage evolution characteristics of coal samples under impact load under different surrounding pressures [J]. Lithosphere, 2022, 2022(Special 11): 1061545. DOI: 10.2113/2022/1061545.
|
[82] |
FENG W H, TANG Y C, HE W M, et al. Mode Ⅰ dynamic fracture toughness of rubberised concrete using a drop hammer device and split Hopkinson pressure bar [J]. Journal of Building Engineering, 2022, 48: 103995. DOI: 10.1016/j.jobe.2022.103995.
|
[83] |
REDDISH D J, STACE L R, VANICHKOBCHINDA P, et al. Numerical simulation of the dynamic impact breakage testing of rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(2): 167–176. DOI: 10.1016/j.ijrmms.2004.06.004.
|
[84] |
周磊, 朱哲明, 董玉清, 等. 中低速冲击载荷下巷道内裂纹的动态响应 [J]. 岩石力学与工程学报, 2017, 36(6): 1363–1372. DOI: 10.13722/j.cnki.jrme.2016.1403.
ZHOU L, ZHU Z M, DONG Y Q, et al. Dynamic response of cracks in tunnels under impact loading of medium-low speed [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6): 1363–1372. DOI: 10.13722/j.cnki.jrme.2016.1403.
|
[85] |
DONG Y Q, ZHU Z M, YU L Y, et al. Investigation of dynamic fracture in VASCT samples under the effect of different loading modes [J]. Theoretical and Applied Fracture Mechanics, 2022, 119: 103321. DOI: 10.1016/j.tafmec.2022.103321.
|
[86] |
ZHOU L, ZHU Z M, QIU H, et al. Study of the effect of loading rates on crack propagation velocity and rock fracture toughness using cracked tunnel specimens [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 25–34. DOI: 10.1016/j.ijrmms.2018.10.011.
|
[87] |
周磊, 朱哲明, 董玉清, 等. 动态加载率对巷道内裂纹扩展速度及动态起裂韧度的影响 [J]. 振动与冲击, 2019, 38(4): 129–136. DOI: 10.13465/j.cnki.jvs.2019.04.021.
ZHOU L, ZHU Z M, DONG Y Q, et al. Effect of dynamic loading rate on crack propagation velocity and dynamic fracture toughness in tunnels [J]. Journal of Vibration and Shock, 2019, 38(4): 129–136. DOI: 10.13465/j.cnki.jvs.2019.04.021.
|
[88] |
董玉清, 朱哲明, 王蒙, 等. 中低速冲击载荷作用下SCT岩石试样Ⅰ型裂纹的动态扩展行为 [J]. 中南大学学报(自然科学版), 2018, 49(11): 2821–2830. DOI: 10.11817/j.issn.1672-7207.2018.11.024.
DONG Y Q, ZHU Z M, WANG M, et al. Mode Ⅰ crack dynamic propagation behavior of SCT specimens under medium-low speed impact load [J]. Journal of Central South University (Science and Technology), 2018, 49(11): 2821–2830. DOI: 10.11817/j.issn.1672-7207.2018.11.024.
|
[89] |
WANG X M, ZHU Z M, WANG M, et al. Study of rock dynamic fracture toughness by using VB-SCSC specimens under medium-low speed impacts [J]. Engineering Fracture Mechanics, 2017, 181: 52–64. DOI: 10.1016/j.engfracmech.2017.06.024.
|
[90] |
LANG L, ZHU Z M, ZHANG X S, et al. Investigation of crack dynamic parameters and crack arresting technique in concrete under impacts [J]. Construction and Building Materials, 2019, 199: 321–334. DOI: 10.1016/j.conbuildmat.2018.12.029.
|
[91] |
LANG L, ZHU Z M, DENG S, et al. Study of crack arrest mechanism and dynamic behaviour using arc-bottom specimen under impacts [J]. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43(9): 2040–2054. DOI: 10.1111/ffe.13282.
|
[92] |
ZHOU Q, ZHU Z M, WANG X, et al. The effect of a pre-existing crack on a running crack in brittle material under dynamic loads [J]. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42(11): 2544–2557. DOI: 10.1111/ffe.13105.
|
[93] |
YANG R S, XU P, YUE Z W, et al. Dynamic fracture analysis of crack-defect interaction for mode Ⅰ running crack using digital dynamic caustics method [J]. Engineering Fracture Mechanics, 2016, 161: 63–75. DOI: 10.1016/j.engfracmech.2016.04.042.
|
[94] |
邓帅, 朱哲明, 王磊, 等. 原岩应力对裂纹动态断裂行为的影响规律研究 [J]. 岩石力学与工程学报, 2019, 38(10): 1989–1999. DOI: 10.13722/j.cnki.jrme.2019.0347.
DENG S, ZHU Z M, WANG L, et al. Study on the influence of in-situ stresses on dynamic fracture behaviors of cracks [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 1989–1999. DOI: 10.13722/j.cnki.jrme.2019.0347.
|
[95] |
XIA K W, YAO W. Dynamic rock tests using split Hopkinson (Kolsky) bar system: a review [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(1): 27–59. DOI: 10.1016/j.jrmge.2014.07.008.
|
[96] |
HAUSER F E. Techniques for measuring stress-strain relations at high strain rates [J]. Experimental Mechanics, 1966, 6(8): 395–402. DOI: 10.1007/BF02326284.
|
[97] |
PERKINS R D, GREEN S J. High speed photography in dynamic materials testing [J]. Review of Scientific Instruments, 1968, 39(8): 1209–1210. DOI: 10.1063/1.1683621.
|
[98] |
CHRISTENSEN R J, SWANSON S R, BROWN W S. Split-Hopkinson-bar tests on rock under confining pressure [J]. Experimental Mechanics, 1972, 12(11): 508–513. DOI: 10.1007/BF02320747.
|
[99] |
FREW D J, FORRESTAL M J, CHEN W. A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials [J]. Experimental Mechanics, 2001, 41(1): 40–46. DOI: 10.1007/BF02323102.
|
[100] |
SONG B, CHEN W. Loading and unloading split Hopkinson pressure bar pulse-shaping techniques for dynamic hysteretic loops [J]. Experimental Mechanics, 2004, 44(6): 622–627. DOI: 10.1177/0014485104048911.
|
[101] |
LI X B, HONG L, YIN T B, et al. Relationship between diameter of split Hopkinson pressure bar and minimum loading rate under rock failure [J]. Journal of Central South University of Technology, 2008, 15(2): 218–223. DOI: 10.1007/s11771-008-0042-7.
|
[102] |
LI X B, ZHOU Z L, LOK T S, et al. Innovative testing technique of rock subjected to coupled static and dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5): 739–748. DOI: 10.1016/j.ijrmms.2007.08.013.
|
[103] |
DAI F, CHEN R, IQBAL M J, et al. Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(4): 606–613. DOI: 10.1016/j.ijrmms.2010.04.002.
|
[104] |
DAI F, XIA K, ZHENG H, et al. Determination of dynamic rock mode-Ⅰ fracture parameters using cracked chevron notched semi-circular bend specimen [J]. Engineering Fracture Mechanics, 2011, 78(15): 2633–2644. DOI: 10.1016/j.engfracmech.2011.06.022.
|
[105] |
CADONI E, ALBERTINI C. Modified Hopkinson bar technologies applied to the high strain rate rock tests [M]//ZHOU Y X, ZHAO J. Advances in Rock Dynamics and Applications. London: CRC Press, 2011: 79–104. DOI: 10.1201/b11077.
|
[106] |
方秦, 阮征, 翟超辰, 等. 围压与温度共同作用下盐岩的SHPB实验及数值分析 [J]. 岩石力学与工程学报, 2012, 31(9): 1756–1765.
FANG Q, RUAN Z, ZHAI C C, et al. Split Hopkinson pressure bar test and numerical analysis of salt rock under confining pressure and temperature [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(9): 1756–1765.
|
[107] |
王蒙, 朱哲明, 王雄. 冲击荷载作用下的Ⅰ/Ⅱ复合型裂纹扩展规律研究 [J]. 岩石力学与工程学报, 2016, 35(7): 1323–1332. DOI: 10.13722/j.cnki.jrme.2015.1260.
WANG M, ZHU Z M, WANG X. The growth of mixed-mode Ⅰ/Ⅱ crack under impacting loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1323–1332. DOI: 10.13722/j.cnki.jrme.2015.1260.
|
[108] |
LI J C, RONG L F, LI H B, et al. An SHPB test study on stress wave energy attenuation in jointed rock masses [J]. Rock Mechanics and Rock Engineering, 2019, 52(2): 403–420. DOI: 10.1007/s00603-018-1586-y.
|
[109] |
QIU H, ZHU Z M, WANG M, et al. Study on crack dynamic propagation behavior and fracture toughness in rock-mortar interface of concrete [J]. Engineering Fracture Mechanics, 2020, 228: 106798. DOI: 10.1016/j.engfracmech.2019.106798.
|
[110] |
邹宝平, 罗战友, 徐付军, 等. 热-水-力耦合条件下深部砂岩冲击动力学特性试验研究 [J]. 岩石力学与工程学报, 2020, 39(9): 1750–1761. DOI: 10.13722/j.cnki.jrme.2020.0205.
ZOU B P, LUO Z Y, XU F J, et al. Experimental study on impact dynamic characteristics of deep sandstone under thermal-hydraulic-mechanical coupling conditions [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(9): 1750–1761. DOI: 10.13722/j.cnki.jrme.2020.0205.
|
[111] |
HAN Z Y, LI D Y, ZHOU T, et al. Experimental study of stress wave propagation and energy characteristics across rock specimens containing cemented mortar joint with various thicknesses [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 131: 104352. DOI: 10.1016/j.ijrmms.2020.104352.
|
[112] |
XIE H P, ZHU J B, ZHOU T, et al. Novel three-dimensional rock dynamic tests using the true triaxial electromagnetic Hopkinson bar system [J]. Rock Mechanics and Rock Engineering, 2021, 54(4): 2079–2086. DOI: 10.1007/s00603-020-02344-4.
|
[113] |
JIANG Y F, ZHOU L, ZHU Z M, et al. Research on dynamic cracking properties of cracked rock mass under the effect of thermal treatment [J]. Theoretical and Applied Fracture Mechanics, 2022, 122: 103580. DOI: 10.1016/j.tafmec.2022.103580.
|
[114] |
LIU X Y, LIU Y, DAI F, et al. Tensile mechanical behavior and fracture characteristics of sandstone exposed to freeze-thaw treatment and dynamic loading [J]. International Journal of Mechanical Sciences, 2022, 226: 107405. DOI: 10.1016/j.ijmecsci.2022.107405.
|
[115] |
WANG L J, FAN L F, DU X L. Non-attenuation behavior of stress wave propagation through a rock mass [J]. Rock Mechanics and Rock Engineering, 2022, 55(7): 3807–3815. DOI: 10.1007/s00603-022-02843-6.
|
[116] |
王蒙, 朱哲明, 谢军. 岩石Ⅰ-Ⅱ复合型裂纹动态扩展SHPB实验及数值模拟研究 [J]. 岩石力学与工程学报, 2015, 34(12): 2474–2485. DOI: 10.13722/j.cnki.jrme.2015.0010.
WANG M, ZHU Z M, XIE J. Experimental and numerical studies of the mixed-mode Ⅰ and Ⅱ crack propagation under dynamic loading using SHPB [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(12): 2474–2485. DOI: 10.13722/j.cnki.jrme.2015.0010.
|
[117] |
WANG M, ZHU Z M, DONG Y Q, et al. Study of mixed-mode Ⅰ/Ⅱ fractures using single cleavage semicircle compression specimens under impacting loads [J]. Engineering Fracture Mechanics, 2017, 177: 33–44. DOI: 10.1016/j.engfracmech.2017.03.042.
|
[118] |
WANG M, WANG F, ZHU Z M, et al. Modelling of crack propagation in rocks under SHPB impacts using a damage method [J]. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42(8): 1699–1710. DOI: 10.1111/ffe.13012.
|
[119] |
WANG F, WANG M. Effect of holes on dynamic crack propagation under impact loading [J]. Applied Sciences, 2020, 10(3): 1122. DOI: 10.3390/app10031122.
|
[120] |
王兴渝, 朱哲明, 邱豪, 等. 冲击荷载下层理对页岩内裂纹扩展行为影响规律的研究 [J]. 岩石力学与工程学报, 2019, 38(8): 1542–1556. DOI: 10.13722/j.cnki.jrme.2019.0111.
WANG X Y, ZHU Z M, QIU H, et al. Study of the effect of stratifications on crack propagation behaviors in shale under impacting loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(8): 1542–1556. DOI: 10.13722/j.cnki.jrme.2019.0111.
|
[121] |
WANG X Y, ZHU Z M, ZHOU L, et al. Study on the effects of joints orientation and strength on failure behavior in shale specimen under impact loads [J]. International Journal of Impact Engineering, 2022, 163: 104162. DOI: 10.1016/j.ijimpeng.2022.104162.
|
[122] |
QIU H, ZHU Z M, WANG F, et al. Dynamic behavior of a running crack crossing mortar-rock interface under impacting load [J]. Engineering Fracture Mechanics, 2020, 240: 107202. DOI: 10.1016/j.engfracmech.2020.107202.
|
[123] |
LIU K, ZHANG Q B, ZHAO J. Dynamic increase factors of rock strength [C]//LI C, LI X, ZHANG Z X. Rock Dynamics and Applications 3: Proceedings of the 3rd International Confrence on Rock Dynamics and Applications (RocDyn-3). London: CRC Press, 2018: 169−174. DOI: 10.1201/9781351181327.
|
[124] |
王伟, 王奇智, 石露, 等. 爆炸荷载下岩石Ⅰ型微裂纹动态扩展研究 [J]. 岩石力学与工程学报, 2014, 33(6): 1194–1202. DOI: 10.13722/j.cnki.jrme.2014.06.013.
WANG W, WANG Q Z, SHI L, et al. Dynamic extension of mode Ⅰ microcracks of rocks under blasting loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6): 1194–1202. DOI: 10.13722/j.cnki.jrme.2014.06.013.
|
[125] |
LIU C Y, YANG J X, YU B. Rock-breaking mechanism and experimental analysis of confined blasting of borehole surrounding rock [J]. International Journal of Mining Science and Technology, 2017, 27(5): 795–801. DOI: 10.1016/j.ijmst.2017.07.016.
|
[126] |
HE C L, YANG J, YU Q. Laboratory study on the dynamic response of rock under blast loading with active confining pressure [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 102: 101–108. DOI: 10.1016/j.ijrmms.2018.01.011.
|
[127] |
PENG J Y, ZHANG F P, YAN G L, et al. Experimental study on rock-like materials fragmentation by electric explosion method under high stress condition [J]. Powder Technology, 2019, 356: 750–758. DOI: 10.1016/j.powtec.2019.09.001.
|
[128] |
闫广亮, 张凤鹏, 郝红泽, 等. 电爆炸破碎岩石类脆性材料实验方法与应用 [J]. 煤炭学报, 2021, 46(10): 3203–3211. DOI: 10.13225/j.cnki.jccs.2020.1397.
YAN G L, ZHANG F P, HAO H Z, et al. Experimental method and application of electrical explosion for breaking rock-like brittle materials [J]. Journal of China Coal Society, 2021, 46(10): 3203–3211. DOI: 10.13225/j.cnki.jccs.2020.1397.
|
[129] |
LI M, ZHU Z M, LIU R F, et al. Study of the effect of empty holes on propagating cracks under blasting loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 103: 186–194. DOI: 10.1016/j.ijrmms.2018.01.043.
|
[130] |
LIU R F, ZHU Z M, LI Y X, et al. Study of rock dynamic fracture toughness and crack propagation parameters of four brittle materials under blasting [J]. Engineering Fracture Mechanics, 2020, 225: 106460. DOI: 10.1016/j.engfracmech.2019.04.034.
|
[131] |
WAN D Y, ZHU Z M, LIU R F, et al. Measuring method of dynamic fracture toughness of mode Ⅰ crack under blasting using a rectangle specimen with a crack and edge notches [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104104. DOI: 10.1016/j.ijrmms.2019.104104.
|
[132] |
李盟, 朱哲明, 刘瑞峰, 等. 孔洞对爆生裂纹动态扩展行为影响研究 [J]. 岩土工程学报, 2018, 40(12): 2191–2199. DOI: 10.11779/CJGE201812005.
LI M, ZHU Z M, LIU R F, et al. Influences of holes on dynamic propagation behaviors of blasting cracks [J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2191–2199. DOI: 10.11779/CJGE201812005.
|
[133] |
QIU P, YUE Z W, YANG R S. Experimental study on mode-Ⅰ and mixed-mode crack propagation under tangentially incident P waves, S waves and reflected waves in blasts [J]. Engineering Fracture Mechanics, 2021, 247: 107664. DOI: 10.1016/j.engfracmech.2021.107664.
|
[134] |
CHEN C, YANG R S, XU P, et al. Experimental study on the interaction between oblique incident blast stress wave and static crack by dynamic photoelasticity [J]. Optics and Lasers in Engineering, 2022, 148: 106764. DOI: 10.1016/j.optlaseng.2021.106764.
|
[135] |
QIU P, YUE Z W, YANG R S, et al. Modified mixed-mode caustics interpretation to study a running crack subjected to obliquely incident blast stress waves [J]. International Journal of Impact Engineering, 2021, 150: 103821. DOI: 10.1016/j.ijimpeng.2021.103821.
|
[136] |
YUE Z W, QIU P, YANG R S, et al. Stress analysis of the interaction of a running crack and blasting waves by caustics method [J]. Engineering Fracture Mechanics, 2017, 184: 339–351. DOI: 10.1016/j.engfracmech.2017.08.037.
|
[137] |
QIU P, YUE Z W, YANG R S, et al. Effects of vertical and horizontal reflected blast stress waves on running cracks by caustics method [J]. Engineering Fracture Mechanics, 2019, 212: 164–179. DOI: 10.1016/j.engfracmech.2019.03.018.
|
[138] |
XU P, YANG R S, GUO Y, et al. Investigation of the effect of the blast waves on the opposite propagating crack [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 144: 104818. DOI: 10.1016/j.ijrmms.2021.104818.
|
[139] |
刘瑞峰, 朱哲明, 刘邦, 等. 爆炸载荷下砂岩动态断裂特性的试验研究 [J]. 岩石力学与工程学报, 2019, 38(3): 445–454. DOI: 10.13722/j.cnki.jrme.2018.1066.
LIU R F, ZHU Z M, LIU B, et al. Experimental study on dynamic fracture characteristics of sandstones under blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(3): 445–454. DOI: 10.13722/j.cnki.jrme.2018.1066.
|
[140] |
LIU R F, ZHU Z M, LI M, et al. Study on dynamic fracture behavior of mode Ⅰ crack under blasting loads [J]. Soil Dynamics and Earthquake Engineering, 2019, 117: 47–57. DOI: 10.1016/j.soildyn.2018.11.009.
|
[141] |
XU P, YANG R S, GUO Y, et al. Investigation of the blast-induced crack propagation behavior in a material containing an unfilled joint [J]. Applied Sciences, 2020, 10(13): 4419. DOI: 10.3390/app10134419.
|
[142] |
GAO J L, KEDIR N, HERNANDEZ J A, et al. Dynamic failure of composite strips under reverse ballistic impact [J]. International Journal of Mechanical Sciences, 2022, 234: 107700. DOI: 10.1016/j.ijmecsci.2022.107700.
|
[143] |
GAO J L, KEDIR N, HERNANDEZ J A, et al. Dynamic fracture of glass fiber-reinforced ductile polymer matrix composites and loading rate effect [J]. Composites Part B: Engineering, 2022, 235: 109754. DOI: 10.1016/j.compositesb.2022.109754.
|
[144] |
GAO J L, FEZZAA K, CHEN W N. Multiscale dynamic experiments on fiber-reinforced composites with damage assessment using high-speed synchrotron X-ray phase-contrast imaging [J]. NDT & E International, 2022, 129: 102636. DOI: 10.1016/j.ndteint.2022.102636.
|