Citation: | TAN Yi, YANG Shuyi, SUN Yaobing, GUO Xiaojun. Determination of constitutive relation and fracture criterion parameters for ZL114A aluminum alloy[J]. Explosion And Shock Waves, 2024, 44(1): 013104. doi: 10.11883/bzycj-2022-0531 |
[1] |
宣海军, 陆晓, 洪伟荣, 等. 航空发动机机匣包容性研究综述 [J]. 航空动力学报, 2010, 25(8): 1860–1870. DOI: 10.13224/j.cnki.jasp.2010.08.012.
XUAN H J, LU X, HONG W R, et al. Review of aero-engine case containment research [J]. Journal of Aerospace Power, 2010, 25(8): 1860–1870. DOI: 10.13224/j.cnki.jasp.2010.08.012.
|
[2] |
中国民用航空局. 航空发动机适航规定: CCAR 33-R2 [S]. 北京: 中国民用航空局, 2011: 48–49.
|
[3] |
袁康博, 姚小虎, 王瑞丰, 等. 金属材料的率-温耦合响应与动态本构关系综述 [J]. 爆炸与冲击, 2022, 42(9): 091401. DOI: 10.11883/bzycj-2021-0416.
YUAN K B, YAO X H, WANG R F, et al. A review on rate-temperature coupling response and dynamic constitutive relation of metallic materials [J]. Explosion and Shock Waves, 2022, 42(9): 091401. DOI: 10.11883/bzycj-2021-0416.
|
[4] |
闫洪霞. 基于位错物理的金属塑性变形本构关系的研究 [D]. 杭州: 浙江大学, 2011: 4–7.
YAN H X. Study on the dislocation-based physical constitutive relations of plastic deformation of metals [D]. Hangzhou: Zhejiang University, 2011: 4–7.
|
[5] |
ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. Journal of Applied Physics, 1987, 61(5): 1816–1825. DOI: 10.1063/1.338024.
|
[6] |
JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistics. The Hague, Netherland, 1983: 541–547.
|
[7] |
FIELDS D S, BACKOFEN W A. Determination of strain hardening characteristics by torsion testing [J]. Proceedings American Society for Testing and Materials, 1957, 57: 1259–1272.
|
[8] |
KHAN A S, HUANG S J. Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range 10−5−104 s−1 [J]. International Journal of Plasticity, 1992, 8(4): 397–424. DOI: 10.1016/0749-6419(92)90057-J.
|
[9] |
JOHNSON G R, HOLMQUIST T J. Evaluation of cylinder-impact test data for constitutive model constants [J]. Journal of Applied Physics, 1988, 64(8): 3901–3910. DOI: 10.1063/1.341344.
|
[10] |
CLAUSEN A H, BØRVIK T, HOPPERSTAD O S, et al. Flow and fracture characteristics of aluminium alloy AA5083-H116 as function of strain rate, temperature and triaxiality [J]. Materials Science and Engineering: A, 2004, 364(1/2): 260–272. DOI: 10.1016/j.msea.2003.08.027.
|
[11] |
BØRVIK T, CLAUSEN A H, ERIKSSON M, et al. Experimental and numerical study on the perforation of AA6005-T6 panels [J]. International Journal of Impact Engineering, 2005, 32(1): 35–64. DOI: 10.1016/j.ijimpeng.2005.05.001.
|
[12] |
辛春亮, 薛再清, 涂建, 等. 有限元分析常用材料参数手册 [M]. 北京: 机械工业出版社, 2020.
|
[13] |
邓云飞, 张永, 吴华鹏, 等. 6061-T651铝合金动态力学性能及J-C本构模型的修正 [J]. 机械工程学报, 2020, 56(20): 74–81. DOI: 10.3901/JME.2020.20.074.
DENG Y F, ZHANG Y, WU H P, et al. Dynamic mechanical properties and modification of J-C constitutive model of 6061-T651 aluminum alloy [J]. Journal of Mechanical Engineering, 2020, 56(20): 74–81. DOI: 10.3901/JME.2020.20.074.
|
[14] |
安剑, 李永丰, 张云光, 等. 热冲压条件下2219铝合金的本构行为测试与建模 [J]. 机械工程学报, 2021, 57(4): 44–52. DOI: 10.3901/JME.2021.04.044.
AN J, LI Y F, ZHANG Y G, et al. Constitutive behavior of 2219 aluminum alloy under hot stamping condition [J]. Journal of Mechanical Engineering, 2021, 57(4): 44–52. DOI: 10.3901/JME.2021.04.044.
|
[15] |
ZHANG Q D, CAO Q, ZHANG X F. A modified Johnson-Cook model for advanced high-strength steels over a wide range of temperatures [J]. Journal of Materials Engineering and Performance, 2014, 23(12): 4336–4341. DOI: 10.1007/s11665-014-1236-9.
|
[16] |
周伦, 苏兴亚, 敬霖, 等. 6061-T6铝合金动态拉伸本构关系及失效行为 [J]. 爆炸与冲击, 2022, 42(9): 091407. DOI: 10.11883/bzycj-2022-0154.
ZHOU L, SU X Y, JING L, et al. Dynamic tensile constitutive relationship and failure behavior of 6061-T6 aluminum alloy [J]. Explosion and Shock Waves, 2022, 42(9): 091407. DOI: 10.11883/bzycj-2022-0154.
|
[17] |
田宪华, 闫奎呈, 赵军, 等. GH2132高温高应变率下力学性能分析与Johnson-Cook本构模型的建立 [J]. 中国机械工程, 2022, 33(7): 872–881. DOI: 10.3969/j.issn.1004-132X.2022.07.015.
TIAN X H, YAN K C, ZHAO J, et al. Properties at elevated temperature and high strain rate and establishment of Johnson-Cook constitutive model for GH2132 [J]. China Mechanical Engineering, 2022, 33(7): 872–881. DOI: 10.3969/j.issn.1004-132X.2022.07.015.
|
[18] |
滑勇之, 关立文, 刘辛军, 等. 铝合金7050-T7451高温高应变率本构方程及修正 [J]. 材料工程, 2012(12): 7–13.
HUA Y Z, GUAN L W, LIU X J, et al. Research and revise on constitutive equation of 7050-T7451 aluminum alloy in high strain rate and high temperature condition [J]. Journal of Materials Engineering, 2012(12): 7–13.
|
[19] |
温彤, 火小畅, 方刚, 等. 基于有限元逆向优化法识别22MnB5板硬化模型参数 [J]. 天津大学学报(自然科学与工程技术版), 2019, 52(11): 1129–1135. DOI: 10.11784/tdxbz201812037.
WEN T, HUO X C, FANG G, et al. Identification of hardening model parameters of a 22MnB5 plate based on finite element reverse optimization method [J]. Journal of Tianjin University (Science and Technology), 2019, 52(11): 1129–1135. DOI: 10.11784/tdxbz201812037.
|
[20] |
茹一帆, 张乐乐, 刘文, 等. 基于缺口试件应力状态试验的Johnson-Cook模型参数反演标定方法 [J]. 机械工程学报, 2021, 57(22): 60–70. DOI: 10.3901/JME.2021.22.060.
RU Y F, ZHANG L L, LIU W, et al. Inverse determination method of Johnson-Cook model parameters based on the stress state test of notched specimens [J]. Journal of Mechanical Engineering, 2021, 57(22): 60–70. DOI: 10.3901/JME.2021.22.060.
|
[21] |
JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
|
[22] |
高玉龙, 孙晓红. 高速列车用6008铝合金动态变形本构与损伤模型参数研究 [J]. 爆炸与冲击, 2021, 41(3): 033101. DOI: 10.11883/bzycj-2020-0119.
GAO Y L, SUN X H. On the parameters of dynamic deformation and damage models of aluminum alloy 6008-T4 used for high-speed railway vehicles [J]. Explosion and Shock Waves, 2021, 41(3): 033101. DOI: 10.11883/bzycj-2020-0119.
|
[23] |
马铭辉, 余毅磊, 蒋招绣, 等. 675装甲钢的静动态力学行为与J-C模型参数拟合确定 [J]. 北京理工大学学报, 2022, 42(6): 596–603. DOI: 10.15918/j.tbit1001-0645.2021.149.
MA M H, YU Y L, JIANG Z X, et al. Static and dynamic mechanical properties of 675 armor steel and determination of J-C model parameters [J]. Transactions of Beijing Institute of Technology, 2022, 42(6): 596–603. DOI: 10.15918/j.tbit1001-0645.2021.149.
|
[24] |
BAO Y B, WIERZBICKI T. A comparative study on various ductile crack formation criteria [J]. Journal of Engineering Materials and Technology, 2004, 126(3): 314–324. DOI: 10.1115/1.1755244.
|
[25] |
TENG X, WIERZBICKI T. Evaluation of six fracture models in high velocity perforation [J]. Engineering Fracture Mechanics, 2006, 73(12): 1653–1678. DOI: 10.1016/j.engfracmech.2006.01.009.
|
[26] |
陈星, 刘月辉. ZL114A铝合金主机匣振动开裂失效分析 [J]. 理化检验:物理分册, 2013, 49(10): 697–700, 703.
CHEN X, LIU Y H. Failure analysis on fracture of ZL114A core box in vibrant testing [J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2013, 49(10): 697–700, 703.
|
[27] |
《中国航空材料手册》编辑委员会. 中国航空材料手册第3卷: 铝合金 镁合金 [M]. 2版. 北京: 中国标准出版社, 2002: 399–400.
|
[28] |
陈光, 洪杰, 马艳红. 航空燃气涡轮发动机结构 [M]. 北京: 北京航空航天大学出版社, 2010: 91–92.
|
[29] |
康福伟, 张继敏, 樊德智, 等. ZL114A合金热变形本构方程 [J]. 哈尔滨理工大学学报, 2018, 23(2): 134–139. DOI: 10.15938/j.jhust.2018.02.024.
KANG F W, ZHANG J M, FAN D Z, et al. Constitutive equation of hot deformation of ZL114A alloy [J]. Journal of Harbin University of Science and Technology, 2018, 23(2): 134–139. DOI: 10.15938/j.jhust.2018.02.024.
|
[30] |
王伏林, 孙兴祚, 肖强, 等. ZL114A铝合金高应变速率下的本构模型与损伤模型 [J]. 塑性工程学报, 2022, 29(11): 120–126. DOI: 10.3969/j.issn.1007-2012.2022.11.014.
WANG F L, SUN X Z, XIAO Q, et al. Constitutive model and damage model of ZL114A aluminum alloy with high strain rate [J]. Journal of Plasticity Engineering, 2022, 29(11): 120–126. DOI: 10.3969/j.issn.1007-2012.2022.11.014.
|
[31] |
叶拓, 李落星, 郭鹏程, 等. 6063铝合金在冲击载荷下的尺寸效应及数值模拟 [J]. 中国机械工程, 2016, 27(23): 3229–3234. DOI: 10.3969/j.issn.1004-132X.2016.23.017.
YE T, LI L X, GUO P C, et al. Effect of specimen size at impact load of 6063 aluminum alloy and numerical simulation [J]. China Mechanical Engineering, 2016, 27(23): 3229–3234. DOI: 10.3969/j.issn.1004-132X.2016.23.017.
|
[32] |
BRIDGMAN W P. Studies in large plastic flow and fracture: with special emphasis on the effects of hydrostatic pressure [M]. New York: McGraw-Hill, 1952.
|
[33] |
西禹, 张强, 张欣钥, 等. 增材制造TC4钛合金的动态力学行为研究 [J]. 力学学报, 2022, 54(2): 425–444. DOI: 10.6052/0459-1879-21-418.
XI Y, ZHANG Q, ZHANG X Y, et al. Dynamic mechanical behavior of additive manufacturing TC4 alloy [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 425–444. DOI: 10.6052/0459-1879-21-418.
|
[34] |
仇鹏, 王家毅, 段晓鸽, 等. AA7021铝合金热变形行为及微观组织演变机理的研究 [J]. 材料导报, 2020, 34(8): 8106–8112. DOI: 10.11896/cldb.19030088.
QIU P, WANG J Y, DUAN X G, et al. Study on hot deformation behavior and microstructure evolution mechanism of AA7021 aluminum alloy [J]. Materials Reports, 2020, 34(8): 8106–8112. DOI: 10.11896/cldb.19030088.
|
[35] |
蒋显全, 蒋诗琪, 齐宝, 等. 铝合金高低温力学性能研究及应用前景 [J]. 世界有色金属, 2015(10): 20–25.
JIANG X Q, JIANG S Q, QI B, et al. The study and application prospect on low-temperature mechanical properties of aluminium alloy [J]. World Nonferrous Metals, 2015(10): 20–25.
|
[36] |
胡时胜, 王礼立, 宋力, 等. Hopkinson压杆技术在中国的发展回顾 [J]. 爆炸与冲击, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.
HU S S, WANG L L, SONG L, et al. Review of the development of Hopkinson pressure bar technique in China [J]. Explosion and Shock Waves, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.
|
[37] |
余同希, 华云龙. 结构塑性动力学引论 [M]. 合肥: 中国科学技术大学出版社, 1994: 1–2.
|
[38] |
周古昕, 郎玉婧, 杜秀征, 等. 高强7A62铝合金动态力学响应及其J-C本构关系 [J]. 中国有色金属学报, 2021, 31(1): 21–29. DOI: 10.11817/j.ysxb.1004.0609.2021-37765.
ZHOU G X, LANG Y J, DU X Z, et al. Dynamic mechanical response and J-C constitutive equation of high strength 7A62 aluminum alloy [J]. The Chinese Journal of Nonferrous Metals, 2021, 31(1): 21–29. DOI: 10.11817/j.ysxb.1004.0609.2021-37765.
|
[39] |
董伊康, 齐建军, 孙力, 等. 车用钢板材料硬化模型的适用性 [J]. 机械工程材料, 2020, 44(10): 81–86. DOI: 10.11973/jxgccl202010017.
DONG Y K, QI J J, SUN L, et al. Applicability of hardening models for automobile steel sheets [J]. Materials for Mechanical Engineering, 2020, 44(10): 81–86. DOI: 10.11973/jxgccl202010017.
|
[40] |
KLEEMOLA H J, NIEMINEN M A. On the strain-hardening parameters of metals [J]. Metallurgical Transactions, 1974, 5(8): 1863–1866. DOI: 10.1007/BF02644152.
|
[41] |
HOCKETT J E, SHERBY O D. Large strain deformation of polycrystalline metals at low homologous temperatures [J]. Journal of the Mechanics and Physics of Solids, 1975, 23(2): 87–98. DOI: 10.1016/0022-5096(75)90018-6.
|
[42] |
黄志辉, 陈盛钊, 柏友运. 显式准静态几种加载方法的讨论 [J]. 武汉理工大学学报, 2011, 33(6): 122–125, 129. DOI: 10.3963/j.issn.1671-4431.2011.06.028.
HUANG Z H, CHEN S Z, BAI Y Y. Discussion of explicit quasi-static loading methods [J]. Journal of Wuhan University of Technology, 2011, 33(6): 122–125, 129. DOI: 10.3963/j.issn.1671-4431.2011.06.028.
|
[43] |
宋家庆, 陆勇, 顾欢达, 等. 弹性、弹塑性材料显式模拟计算中的准静态加载速度研究 [J]. 固体力学学报, 2019, 40(3): 277–286. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2019.006.
SONG J Q, LU Y, GU H D, et al. Study on quasi-static loading rate in explicit calculation of elastic and elastic-plastic materials [J]. Chinese Journal of Solid Mechanics, 2019, 40(3): 277–286. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2019.006.
|
[44] |
HALLQUIST J O. LS-DYNA theory manual [M]. CA: Livermore Software Technology Corporation, 2006.
|
[45] |
COWPER G R, SYMONDS P S. Strain-hardening and strain-rate effects in the impact loading of cantilever beams [R]. Providence: Brown University, 1957.
|
[46] |
ERICE B, GÁLVEZ F, CENDÓN D A, et al. Flow and fracture behaviour of FV535 steel at different triaxialities, strain rates and temperatures [J]. Engineering Fracture Mechanics, 2012, 79: 1–17. DOI: 10.1016/j.engfracmech.2011.08.023.
|
[47] |
邓云飞, 张永, 曾宪智, 等. 6061-T651铝合金动态力学性能及断裂准则修正 [J]. 机械工程学报, 2020, 56(18): 81–91. DOI: 10.3901/jme.2020.18.081.
DENG Y F, ZHANG Y, ZENG X Z, et al. Dynamic mechanical properties and modification of fracture criteria of 6061-T651 aluminum alloy [J]. Journal of Mechanical Engineering, 2020, 56(18): 81–91. DOI: 10.3901/jme.2020.18.081.
|
[48] |
BAO Y B, WIERZBICKI T. On the cut-off value of negative triaxiality for fracture [J]. Engineering Fracture Mechanics, 2005, 72(7): 1049–1069. DOI: 10.1016/j.engfracmech.2004.07.011.
|
[49] |
张伟, 魏刚, 肖新科. 2A12铝合金本构关系和失效模型 [J]. 兵工学报, 2013, 34(3): 276–282. DOI: 10.3969/j.issn.1000-1093.2013.03.004.
ZHANG W, WEI G, XIAO X K. Constitutive relation and fracture criterion of 2A12 aluminum alloy [J]. Acta Armamentarii, 2013, 34(3): 276–282. DOI: 10.3969/j.issn.1000-1093.2013.03.004.
|
[1] | BAI Zhiling, DUAN Zhuoping, WEN Lijing, ZHANG Zhenyu, OU Zhuocheng, HUANG Fenglei. A multi-component Duan-Zhang-Kim mesoscopic reaction rate model for shock initiation of multi-component PBX explosives[J]. Explosion And Shock Waves, 2019, 39(11): 112101. doi: 10.11883/bzycj-2018-0410 |
[2] | LIU Haiqing, DUAN Zhuoping, BAI Zhiling, WEN Lijing, OU Zhuocheng, HUANG Fenglei. Experimental research on effects of porosity on shock initiation of PBX explosive[J]. Explosion And Shock Waves, 2019, 39(7): 072302. doi: 10.11883/bzycj-2018-0226 |
[3] | Pi Zhengdi, Chen Lang, Liu Danyang, Wu Junying. Shock initiation of CL-20 based explosives[J]. Explosion And Shock Waves, 2017, 37(6): 915-923. doi: 10.11883/1001-1455(2017)06-0915-09 |
[4] | Zhang Menghua, Wang Pengxin, Yu Yonggang, Ruan Wenjun, Wang Jian, Ning Huijun. Numerical simulation of the delay time of impact initiated projectile[J]. Explosion And Shock Waves, 2016, 36(5): 728-733. doi: 10.11883/1001-1455(2016)05-0728-06 |
[5] | Pan Jian, Zhang Xianfeng, He Yong, Deng Qibin. Theoretical and numerical study on detonation wave Mach reflection in high explosive charge with waveshaper[J]. Explosion And Shock Waves, 2016, 36(4): 449-456. doi: 10.11883/1001-1455(2016)04-0449-08 |
[6] | Chen Shao-jie, Wu Li-zhi, Shen Rui-qi, Ye Ying-hua, Hu Yan. Initiation of HNS-Ⅳ using a laser-driven multi-layer flyer[J]. Explosion And Shock Waves, 2015, 35(2): 285-288. doi: 10.11883/1001-1455-(2015)02-0285-04 |
[7] | Jiang Xi-bo, Rao Guo-ning, Xu Sen, Yao Miao, Ma An-peng, Peng Jin-hua. Shock initiation characteristics of expired single-base propellants[J]. Explosion And Shock Waves, 2014, 34(1): 99-105. doi: 10.11883/1001-1455(2014)01-0099-07 |
[8] | Yu Ming, Zhang Wen-hong, Yu Heng. Confinement effect of inert materials on insensitive high explosives[J]. Explosion And Shock Waves, 2014, 34(3): 300-306. doi: 10.11883/1001-1455(2014)03-0300-07 |
[9] | Chen Lang, Liu Qun, Wy Jun-ying. On shock initiation of heated explosives[J]. Explosion And Shock Waves, 2013, 33(1): 21-28. doi: 10.11883/1001-1455(2013)01-0021-08 |
[10] | WANG Bin, TAN Duo-wang, ZHAO Ji-bo, WEN Shang-gang. DiametereffectofJBO-9021ratesticksatroomtemperature[J]. Explosion And Shock Waves, 2012, 32(5): 490-494. doi: 10.11883/1001-1455(2012)05-0490-05 |
[11] | HAO Peng-cheng, FENG Qi-jing, HONG Tao, WANG Yan-jin. Euleriansimulationoninsensitiveexplosives withtheignition-growthreactivemodel[J]. Explosion And Shock Waves, 2012, 32(3): 243-250. doi: 10.11883/1001-1455(2012)03-0243-08 |
[12] | TAO Wei-jun, HUAN Shi, HUANG Feng-lei, JIANG Guo-ping. Lateralrarefactionwaveeffectsonshockinitiation ofheterogeneouscondensedexplosives[J]. Explosion And Shock Waves, 2011, 31(4): 397-401. doi: 10.11883/1001-1455(2011)04-0397-05 |
[13] | ZHANG Zhong, CHEN Wei-dong, YANG Wen-miao. Thematerialpointmethodforshock-to-detonationtransitionof heterogeneoussolidexplosive[J]. Explosion And Shock Waves, 2011, 31(1): 25-30. doi: 10.11883/1001-1455(2011)01-0025-06 |
[14] | MA Hui. Effectsofslowenergy-releaseinIHEdetonationprocess[J]. Explosion And Shock Waves, 2011, 31(5): 553-556. doi: 10.11883/1001-1455(2011)05-0553-04 |
[15] | CHEN Jun, ZENG Dai-peng, SUN Cheng-wei, ZHANG Zhen-yu, TAND uo-wang. Equationsofstateforoverdriven-detonationproducts ofJB-9014explosive[J]. Explosion And Shock Waves, 2010, 30(6): 583-587. doi: 10.11883/1001-1455(2010)06-0583-05 |
[16] | WANG Gui-ji, ZHAO Tong-hu, MO Jian-jun, WU Gang, HAN Mei, TAN Fu-li. Short-duration pulse shock initiation characteristics of a TATB/HMX-based polymer bonded explosive[J]. Explosion And Shock Waves, 2007, 27(3): 230-235. doi: 10.11883/1001-1455(2007)03-0230-06 |
[17] | PAN Hao, HU Xiao-mian. A new reaction rate model for simulating the detonation process of the insensitive high explosives[J]. Explosion And Shock Waves, 2007, 27(3): 236-239. doi: 10.11883/1001-1455(2007)03-0236-04 |
[18] | ZOU Li-yong, TAN Duo-wang, WEN Shang-gang, ZHAO Ji-bo, FANG Qing. Experimental study on the nonideal detonation for JB-9014 rate sticks at -30 ℃[J]. Explosion And Shock Waves, 2007, 27(4): 325-330. doi: 10.11883/1001-1455(2007)04-0325-06 |
[19] | LI Zhi-peng, LONG Xin-ping, HUANG Yi-min, HE Bi, WANG Rong, HE Song-wei. Electromagnetic gauge measurements of shock initiating JOB-9003 explosive[J]. Explosion And Shock Waves, 2006, 26(3): 269-272. doi: 10.11883/1001-1455(2006)03-0269-04 |
[20] | YU De-shui, ZHAO Feng, TAN Duo-wang, PENG Qi-xian, FANG Qing. Experimental studies on detonation driving behavior of JOB-9003 and JB-9014 slab explosives[J]. Explosion And Shock Waves, 2006, 26(2): 140-144. doi: 10.11883/1001-1455(2006)02-0140-05 |
1. | 孙远翔,刘新,陈岩武,王成. 水下爆炸气泡射流载荷及对结构毁伤研究进展. 舰船科学技术. 2024(01): 1-7 . ![]() | |
2. | 王万军,孙秀娟,张雷,雷凡,郭菲,杨爽,付秋菠. 亚微秒内金丝电爆炸的激光探针测试及三维动力学仿真. 含能材料. 2019(06): 473-480 . ![]() | |
3. | 张桂夫,朱雨建,杨基明. 水下爆炸冲击凹陷液面诱导射流研究. 爆炸与冲击. 2018(02): 241-249 . ![]() | |
4. | 廖斌,朱雨建,杨基明. 冲击作用下液滴在环境液体中的演变过程及主导因素. 中国科学:物理学 力学 天文学. 2017(09): 45-54 . ![]() |