Volume 43 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
LOU Xiaoming, CHEN Shiwei, LI Guangbin, NIU Mingyuan, LIN Rizong, YAO Bingjin. Stage characteristics of impact pressure of blasthole-walls with different diameters under coupled charge conditions[J]. Explosion And Shock Waves, 2023, 43(8): 085201. doi: 10.11883/bzycj-2022-0547
Citation: LOU Xiaoming, CHEN Shiwei, LI Guangbin, NIU Mingyuan, LIN Rizong, YAO Bingjin. Stage characteristics of impact pressure of blasthole-walls with different diameters under coupled charge conditions[J]. Explosion And Shock Waves, 2023, 43(8): 085201. doi: 10.11883/bzycj-2022-0547

Stage characteristics of impact pressure of blasthole-walls with different diameters under coupled charge conditions

doi: 10.11883/bzycj-2022-0547
  • Received Date: 2022-12-08
  • Rev Recd Date: 2023-04-20
  • Available Online: 2023-04-25
  • Publish Date: 2023-08-31
  • In order to reduce blasting vibration reasonably and determine the damage range of single hole, it is necessary to study the impact pressure changing law of different bore diameters. By analyzing the movement process of the hole wall under the action of detonation, a simplified calculation model for three stages of dynamic expansion of the incompressible fluid, rock-breaking, and dynamic expansion of the hole wall under the action of the explosive shock wave is established, and the time history subsection function of the hole wall pressure in each stage is determined. Based on the ideal gas expansion equation, the theoretical amplification factor of peak pressure on the bore wall is determined, the stage characteristics of bore wall pressure change were mathematically unified, and the impact pressure characteristic curves of impact pressure on the bore wall of blast-hole coupling charge were obtained. Based on LS-DYNA numerical simulation software and field industrial model test, the calculation model results were compared and validated by numerical analysis and super-dynamic strain test model test. The impact pressure curves of five different pore diameters (51−200 mm) under the coupled charge condition were obtained, and the theoretical amplification coefficient of the peak pore pressure was verified by experiments. The theoretical model error is controlled between 0.7% and 6.4%. The comparison and analysis of theoretical calculation, historical point of numerical analysis, and measured point data of model test under two specific conditions of 76 and 90 mm show that the theoretical piecewise function can effectively fit the data of numerical analysis and model test. The error of peak pressure is 6.8% and 4.9%, and that of time is 7.6% and 4.8%, respectively.
  • loading
  • [1]
    刘益超, 郭进平, 李角群, 等. 基于Floyd算法的扇形中深孔爆破布孔优化设计 [J]. 爆破, 2021, 38(1): 64–69, 152. DOI: 10.3963/j.issn.1001-487X.2021.01.010.

    LIU Y C, GUO J P, LI J Q, et al. Optimal design of hole arrangement for fan-shaped medium-length-hole blasting based on Floyd algorithm [J]. Blasting, 2021, 38(1): 64–69, 152. DOI: 10.3963/j.issn.1001-487X.2021.01.010.
    [2]
    叶志伟, 陈明, 魏东, 等. 不耦合装药爆破孔壁压力峰值的实验研究 [J]. 爆炸与冲击, 2021, 41(5): 055201. DOI: 10.11883/bzycj-2020-0004.

    YE Z W, CHEN M, WEI D, et al. Experimental study on the peak pressure of borehole wall in decoupling charge blasting [J]. Explosion and Shock Waves, 2021, 41(5): 055201. DOI: 10.11883/bzycj-2020-0004.
    [3]
    FAN L F, WANG L J, WU Z J. Wave transmission across linearly jointed complex rock masses [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 193–200. DOI: 10.1016/j.ijrmms.2018.09.004.
    [4]
    唐廷, 尤峰, 葛涛, 等. 爆炸荷载简化形式对弹性区应力场的影响 [J]. 爆破, 2007, 24(2): 7–10, 17. DOI: 10.3963/j.issn.1001-487X.2007.02.002.

    TANG T, YOU F, GE T, et al. Effects of simplified forms of explosion load on stress field of elastic zone during explosion [J]. Blasting, 2007, 24(2): 7–10, 17. DOI: 10.3963/j.issn.1001-487X.2007.02.002.
    [5]
    毛从光, 郭晓强, 周辉, 等. 高空核电磁脉冲模拟波形的双指数函数拟合法[J]. 强激光与粒子束, 2004, 16(3): 336–340.

    MAO C G, GUO X Q, ZHOU H, et al. Fitting method of the simulated HEMP waveform by the double-exponential function[J]. High Power Laser and Particle Beams, 2004, 16(3): 336–340.
    [6]
    STARFIELD A M, PUGLIESE J M. Compression waves generated in rock by cylindrical explosive charges: a comparison between a computer model and field measurements [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1968, 5(1): 65–77. DOI: 10.1016/0148-9062(68)90023-5.
    [7]
    JONG Y, LEE C, JEON S, et al. Numericalmodeling of the circular-cut using particle flaw code[C]//Proceedings of the 31st Annular Conference of Explosives and Blasting Technique. Orlando: CD-ROM, 2005.
    [8]
    张馨, 孙金山, 张湘平, 等. 钻孔爆破炮孔孔壁压力计算模型 [J]. 爆破, 2021, 38(3): 1–5. DOI: 10.3963/j.issn.1001-487X.2021.03.001.

    ZHANG X, SUN J S, ZHANG X P, et al. Calculation model of blasthole pressure [J]. Blasting, 2021, 38(3): 1–5. DOI: 10.3963/j.issn.1001-487X.2021.03.001.
    [9]
    钱七虎. 岩石爆炸动力学的若干进展 [J]. 岩石力学与工程学报, 2009, 28(10): 1945–1968. DOI: 10.3321/j.issn:1000-6915.2009.10.001.

    QIAN Q H. Some advances in rock blasting dynamics [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 1945–1968. DOI: 10.3321/j.issn:1000-6915.2009.10.001.
    [10]
    葛涛, 吴华杰, 陶剑青, 等. 岩石中爆炸破碎区边界参数研究 [J]. 爆破, 2005, 22(3): 5–8. DOI: 10.3963/j.issn.1001-487X.2005.03.002.

    GE T, WU H J, TAO J Q, et al. Study on boundary parameters of crushing zone during explosion in rock [J]. Blasting, 2005, 22(3): 5–8. DOI: 10.3963/j.issn.1001-487X.2005.03.002.
    [11]
    冷振东, 卢文波, 陈明, 等. 岩石钻孔爆破粉碎区计算模型的改进 [J]. 爆炸与冲击, 2015, 35(1): 101–107. DOI: 10.11883/1001-1455(2015)01-0101-07.

    LENG Z D, LU W B, CHEN M, et al. Improved calculation model for the size of crushed zone around blasthole [J]. Explosion and Shock Waves, 2015, 35(1): 101–107. DOI: 10.11883/1001-1455(2015)01-0101-07.
    [12]
    DJORDJEVIC N. Two-component model of blast fragmentation[C]//Proceedings of the 6th International Symposium for Rock Fragmentation by Blasting. South Africa, 1999: 213–219.
    [13]
    肖定军, 朱哲明, 蒲传金, 等. 爆炸荷载下青砂岩动态起裂韧度的测试方法 [J]. 爆炸与冲击, 2020, 40(2): 024101. DOI: 10.11883/bzycj-2018-0516.

    XIAO D J, ZHU Z M, PU C J, et al. Study of testing method for dynamic initiation toughness of blue sandstone under blasting loading [J]. Explosion and Shock Waves, 2020, 40(2): 024101. DOI: 10.11883/bzycj-2018-0516.
    [14]
    LIU K W, LI X H, LI X B, et al. Characteristics and mechanisms of strain waves generated in rock by cylindrical explosive charges [J]. Journal of Central South University, 2016, 23(11): 2951–2957. DOI: 10.1007/s11771-016-3359-7.
    [15]
    ОРЛЕНКО Л П. 爆炸物理学(上册)[M]. 孙承纬, 译. 北京: 科学出版社, 2011: 17−30.
    [16]
    戴俊. 岩石动力学特性与爆破理论[M]. 2版. 北京: 冶金工业出版社, 2013.
    [17]
    楼晓明. 乌龙泉矿裂隙岩体爆破参数优化的研究[D]. 武汉: 武汉科技大学, 2004.
    [18]
    孙承纬, 卫玉章, 周之奎. 应用爆轰物理[M]. 北京: 国防工业出版社, 2000.
    [19]
    CHI L Y, ZHANG Z X, AALBERG A, et al. Measurement of shock pressure and shock-wave attenuation near a blast hole in rock [J]. International Journal of Impact Engineering, 2019, 125: 27–38. DOI: 10.1016/j.ijimpeng.2018.11.002.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(8)

    Article Metrics

    Article views (350) PDF downloads(109) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return