Citation: | XIAO Youcai, WANG Ruisheng, FAN Chenyang, ZHANG Hong, WANG Zhijun, SUN Yi. Cook-off experiment on the JH-14C booster explosive with a shell and the relevant numerical simulation[J]. Explosion And Shock Waves, 2023, 43(7): 072301. doi: 10.11883/bzycj-2022-0555 |
[1] |
郭伟, 贾路川, 王浩旭, 等. 加速老化PBX-6炸药的烤燃实验研究 [J]. 火炸药学报, 2022, 45(3): 315–322. DOI: 10.14077/j.issn.1007-7812.202203040.
GUO W, JIA L C, WANG H X, et al. Experimental research on cook-off test of accelerated aging PBX-6 explosive [J]. Chinese Journal of Explosives and Propellants, 2022, 45(3): 315–322. DOI: 10.14077/j.issn.1007-7812.202203040.
|
[2] |
刘静, 余永刚. 不同升温速率下模块装药慢速烤燃特性的数值模拟 [J]. 兵工学报, 2019, 40(5): 990–995. DOI: 10.3969/j.issn.1000-1093.2019.05.011.
LIU J, YU Y G. Simulation of slow cook-off for modular charges at different heating rates [J]. Acta Armamentarii, 2019, 40(5): 990–995. DOI: 10.3969/j.issn.1000-1093.2019.05.011.
|
[3] |
王沛, 陈朗, 冯长根. 不同升温速率下炸药烤燃模拟计算分析 [J]. 含能材料, 2009, 17(1): 46–49, 54. DOI: 10.3969/j.issn.1006-9941.2009.01.012.
WANG P, CHEN L, FENG C G. Numerical simulation of cook-off for explosive at different heating rates [J]. Chinese Journal of Energetic Materials, 2009, 17(1): 46–49, 54. DOI: 10.3969/j.issn.1006-9941.2009.01.012.
|
[4] |
邓玉成, 李军, 任慧, 等. 不同结构尺寸丁羟发动机慢速烤燃特性 [J]. 含能材料, 2022, 30(2): 155–162. DOI: 10.11943/CJEM2021097.
DENG Y C, LI J, REN H, et al. Slow cook-off characteristics of HTPB SRM with different structural sizes [J]. Chinese Journal of Energetic Materials, 2022, 30(2): 155–162. DOI: 10.11943/CJEM2021097.
|
[5] |
MERZHANOV A G, AVERSON A E. The present state of the thermal ignition theory: an invited review [J]. Combustion and Flame, 1971, 16(1): 89–124. DOI: 10.1016/S0010-2180(71)80015-9.
|
[6] |
TERRONES G, SOUTO F J, SHEA R F, et al. Data analysis, pre-ignition assessment, and post-ignition modeling of the large-scale annular cookoff tests: LA-14190 [R]. Los Alamos, USA: Los Alamos National Laboratory, 2005. DOI: 10.2172/861364.
|
[7] |
ASAY B W. Shock wave science and technology reference library, vol. 5: non-shock initiation of explosives [M]. Berlin, Germany: Springer, 2010: 198–200. DOI: 10.1007/978-3-540-87953-4.
|
[8] |
刘仓理. 装药化爆安全性 [M]. 北京: 科学出版社, 2022: 123–127.
LIU C L. Explosive safety of charge [M]. Beijing, China: Science Press, 2022: 123–127.
|
[9] |
PARKER R P. USA small-scale cook-off bomb (SCB) test [C]//Minutes of 21st Department of Defense Explosives Safety Board Explosives Safety Seminar. Houston, USA, 1984: 539–548.
|
[10] |
HOBBS M L, KANESHIGE M J, ERIKSON W W. Modeling the measured effect of a nitroplasticizer (BDNPA/F) on cookoff of a plastic bonded explosive (PBX 9501) [J]. Combustion and Flame, 2016, 173: 132–150. DOI: 10.1016/j.combustflame.2016.08.014.
|
[11] |
KOU Y F, CHEN L, LU J Y, et al. Assessing the thermal safety of solid propellant charges based on slow cook-off tests and numerical simulations [J]. Combustion and Flame, 2021, 228: 154–162. DOI: 10.1016/j.combustflame.2021.01.043.
|
[12] |
LI X D, WANG J Y, LIU W J, et al. Effect of vent hole size on combustion and explosion characteristics during cook-off tests [J]. Combustion and Flame, 2022, 240: 111989. DOI: 10.1016/j.combustflame.2022.111989.
|
[13] |
智小琦, 胡双启, 李娟娟, 等. 不同约束条件下钝化RDX的烤燃响应特性 [J]. 火炸药学报, 2009, 32(3): 22–24,34. DOI: 10.3969/j.issn.1007-7812.2009.03.007.
ZHI X Q, HU S Q, LI J J, et al. Cook-off response characteristics of desensitizing RDX explosive under different restriction conditions [J]. Chinese Journal of Explosives and Propellants, 2009, 32(3): 22–24,34. DOI: 10.3969/j.issn.1007-7812.2009.03.007.
|
[14] |
WHITE N, REEVES T, CHEESE P, et al. Live decomposition imaging of HMX/HTPB based formulations during cook-off in the dual window test vehicle [J]. AIP Conference Proceedings, 2018, 1979(1): 150041.
|
[15] |
CHEESE P, REEVES T, WHITE N, et al. Development of a dual windowed test vehicle for live streaming of cook-off in energetic materials [J]. AIP Conference Proceedings, 2018, 1979(1): 150009.
|
[16] |
乔炳旭, 李小东, 燕翔, 等. 粘结剂种类和含量对HMX基PBX烤燃响应特性的影响研究 [J]. 兵器装备工程学报, 2021, 42(12): 261–267. DOI: 10.11809/bqzbgcxb2021.12.040.
QIAO B X, LI X D, YAN X, et al. Study on influence of binder type and content of HMX-based PBX on response behavior under cook-off conditions [J]. Journal of Ordnance Equipment Engineering, 2021, 42(12): 261–267. DOI: 10.11809/bqzbgcxb2021.12.040.
|
[17] |
TARVER C M, KOERNER J G. Effects of endothermic binders on times to explosion of HMX- and TATB-based plastic bonded explosives [J]. Journal of Energetic Materials, 2007, 26(1): 1–28. DOI: 10.1080/07370650701719170.
|
[18] |
CHAVES F R, GÓIS J C. Slow cook-off simulation of PBX based on RDX [J]. Journal of Aerospace Technology and Management, 2017, 9(2): 225–230. DOI: 10.5028/jatm.v9i2.729.
|
[19] |
JORENBY J W. Heat transfer analysis and assessment of kinetics systems for PBX 9501: LA-14259-T [R]. Los Alamos, USA: Los Alamos National Laboratory, 2006. DOI: 10.2172/902466.
|
[20] |
JAEGER D L. Thermal response of spherical explosive charges subjected to external heating: W-7405-ENG-36 [R]. Los Alamos, USA: Los Alamos National Laboratory, 1980. DOI: 10.2172/5102476.
|
[21] |
DICKSON P M, ASAY B W, HENSON B F, et al. Measurement of phase change and thermal decomposition kinetics during cookoff of PBX 9501 [J]. AIP Conference Proceedings, 2000, 505(1): 837–840.
|
[22] |
刘瑞峰, 王昕捷, 黄风雷, 等. 2, 4-二硝基苯甲醚基熔铸炸药宏细观烤燃响应特性数值分析 [J]. 兵工学报, 2022, 43(2): 287–296. DOI: 10.3969/j.issn.1000-1093.2022.02.006.
LIU R F, WANG X J, HUANG F L, et al. Macro-meso-scale cook-off simulations of DNAN-based melt-cast explosives [J]. Acta Armamentarii, 2022, 43(2): 287–296. DOI: 10.3969/j.issn.1000-1093.2022.02.006.
|
[23] |
陈朗, 马欣, 黄毅民, 等. 炸药多点测温烤燃实验和数值模拟 [J]. 兵工学报, 2011, 32(10): 1230–1236.
CHEN L, MA X, HUANG Y M, et al. Multi-point temperature measuring cook-off test and numerical simulation of explosive [J]. Acta Armamentarii, 2011, 32(10): 1230–1236.
|
[24] |
GRASWALD M, GUTSER R, SCHWEIZER M. Extended multi-physics model for slow-cook off events of warheads [C]//Insensitive Munitions and Energetic Materials Technology Symposium. Seville, Spain, 2019.
|
[25] |
Defence Investment Division, NATO International Staff. Guidance on the assessment and development of insensitive munitions (IM): AOP-39 (3rd ed) [S]. USA: Allied Ordnance Publication, 2010. DOI: 10.5281/zenodo.3592238.
|
[26] |
XIAO Y C, SUN Y, LI X, et al. Dynamic compressive properties of polymer bonded explosives under confining pressure [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(8): 873–882. DOI: 10.1002/prep.201700016.
|
[27] |
李硕, 袁俊明, 刘玉存, 等. 聚黑-14C的传爆装置冲击起爆实验及数值模拟 [J]. 火炸药学报, 2016, 39(6): 63–68. DOI: 10.14077/j.issn.1007-7812.2016.06.011.
LI S, YUAN J M, LIU Y C, et al. Experiment and numerical simulation of shock initiation of JH-14C detonation device [J]. Chinese Journal of Explosives and Propellants, 2016, 39(6): 63–68. DOI: 10.14077/j.issn.1007-7812.2016.06.011.
|
[28] |
代晓淦, 黄毅民, 吕子剑, 等. 不同升温速率热作用下PBX-2炸药的响应规律 [J]. 含能材料, 2010, 18(3): 282–285. DOI: 10.3969/j.issn.1006-9941.2010.03.010.
DAI X G, HUANG Y M, LV Z J, et al. Reaction behavior for PBX-2 explosive at different heating rate [J]. Chinese Journal of Energetic Materials, 2010, 18(3): 282–285. DOI: 10.3969/j.issn.1006-9941.2010.03.010.
|
[29] |
牛余雷, 南海, 冯晓军, 等. RDX基PBX炸药烤燃试验与数值计算 [J]. 火炸药学报, 2011, 34(1): 32–36, 41. DOI: 10.3969/j.issn.1007-7812.2011.01.007.
NIU Y L, NAN H, FENG X J, et al. Cook-off test and its numerical calculation of RDX-based PBX explosive [J]. Chinese Journal of Explosives and Propellants, 2011, 34(1): 32–36, 41. DOI: 10.3969/j.issn.1007-7812.2011.01.007.
|
[1] | LI Haokai, FENG Yuxiang, LI Yuan, SUO Tao. Power characteristics of drum-shaped warheads under multi-point detonations[J]. Explosion And Shock Waves, 2024, 44(3): 031403. doi: 10.11883/bzycj-2023-0317 |
[2] | DAI Xianghui, WANG Kehui, ZHOU Gang, LI Ming, SHEN Zikai, DUAN Jian, LI Pengjie, YANG Hui, WU Haijun. Experimental study on explosion characteristics of penetrator with elliptical cross-section[J]. Explosion And Shock Waves, 2023, 43(5): 053302. doi: 10.11883/bzycj-2022-0079 |
[3] | DENG Yuxuan, ZHANG Xianfeng, LIU Chuang, LIU Junwei, LI Pengcheng, SHENG Qiang, XIAO Chuan. Casing fracture and damage characteristics of an elliptical cross-section warhead under explosive loading[J]. Explosion And Shock Waves, 2023, 43(9): 091412. doi: 10.11883/bzycj-2023-0135 |
[4] | LI Guojie, WANG Chenglong, GUO Zhiwei, LI Xiang, HUANG Guangyan. Influence of end non-reactive fillers on the dispersion of the fragments in an axially-enhanced warhead[J]. Explosion And Shock Waves, 2022, 42(8): 082202. doi: 10.11883/bzycj-2021-0281 |
[5] | MA Fulin, YANG Nana, ZHAO Tianyou, CHEN Zhipeng, YAO Xiongliang. Peridynamic damage simulation of ship composite structures subjected to combined action of shock wave and fragments[J]. Explosion And Shock Waves, 2022, 42(3): 033304. doi: 10.11883/bzycj-2021-0080 |
[6] | ZHANG Yuling, SHI Dongmei, ZHANG Yunfeng, LIU Guoqing, ZHEN Jianwei. Investigation of penetration ability and aftereffect of Zr-based metallic glass reinforced porous W matrix composite fragments[J]. Explosion And Shock Waves, 2021, 41(5): 053301. doi: 10.11883/bzycj-2020-0063 |
[7] | ZHOU Jie, ZHI Xiaoqi, XU Jinbo, YUE Zhonghao. Research on penetration of small size fragment to single soldier protection equipment[J]. Explosion And Shock Waves, 2019, 39(2): 023304. doi: 10.11883/bzycj-2018-0023 |
[8] | MA Liying, LI Xiangdong, ZHOU Lanwei, LAN Xiaoying, GONG Xiaoze, YAO Zhijun. Study on wall damage of vessel in high-speed fragment impact liquid-filled vessel[J]. Explosion And Shock Waves, 2019, 39(2): 023302. doi: 10.11883/bzycj-2018-0009 |
[9] | DU Bojun, LIU Zeqing, WANG Yalin, XU Yong, LI Qianwu. A test method of motion parameters of static explosion based on high-speed photography[J]. Explosion And Shock Waves, 2019, 39(9): 094101. doi: 10.11883/bzycj-2018-0175 |
[10] | MA Liying, LI Xiangdong, ZHOU Lanwei, ZHANG Gaofeng. Characteristics of draging period cavity formation in liquid filling container by fragment impacting[J]. Explosion And Shock Waves, 2018, 38(6): 1412-1418. doi: 10.11883/bzycj-2017-0188 |
[11] | LAN Xiaoying, LI Xiangdong, ZHOU Lanwei, GONG Xiaoze, YAO Zhijun. Critical ricochet angle of cylindrical tungsten fragment impacting aluminum target[J]. Explosion And Shock Waves, 2018, 38(6): 1278-1285. doi: 10.11883/bzycj-2017-0210 |
[12] | Chen Changhai, Hou Hailiang, Zhang Yuanhao, Dai Wenxi, Zhu Xi, Fang Zhiwei. Residual characteristics of moderately thick water-backed steel plates penetrated by high-velocity fragments[J]. Explosion And Shock Waves, 2017, 37(6): 959-965. doi: 10.11883/1001-1455(2017)06-0959-07 |
[13] | Fan Zijian, Ran Xianwen, Tang Wenhui, Yu Guodong, Chen Weike, Ren Caiqing. Calculation method and influencing factors of the fragmental radial velocities of PELE after penetrating thin target[J]. Explosion And Shock Waves, 2017, 37(4): 621-628. doi: 10.11883/1001-1455(2017)04-0621-08 |
[14] | Kong Xiang-shao, Wu Wei-guo, Li Jun, Li Xiao-bin, Xu Shuang-xi. Effects of explosion fragments penetrating defensive liquid-filled cabins[J]. Explosion And Shock Waves, 2013, 33(5): 471-478. doi: 10.11883/1001-1455(2013)05-0471-08 |
[15] | HUANG Guang-yan, FENG Shun-shan, LIU Pei-qing. AvisualC~(++)andMatlab-basedcomputationalmethod forshot-linesofwarheadfragmentstoatarget[J]. Explosion And Shock Waves, 2010, 30(4): 413-418. doi: 10.11883/1001-1455(2010)04-0413-06 |
[16] | SONG Gui-fei, LI Cheng-guo, XIA Fu-jun, WEN Qi. A new explosion vessel used to recover warhead fragments and its application[J]. Explosion And Shock Waves, 2008, 28(4): 372-377. doi: 10.11883/1001-1455(2008)04-0372-06 |
[17] | LI Xiang-dong, SU Yi-ling, HAN Yong-yao. Vulnerability assessment of the missile subjected to the fragment warhead[J]. Explosion And Shock Waves, 2007, 27(5): 468-472. doi: 10.11883/1001-1455(2007)05-0468-05 |
[18] | MI Shuang-shan, ZHANG Xi-en, TAO Gui-ming. Finite element analysis of spherical fragments penetrating LY-12 aluminum alloy target[J]. Explosion And Shock Waves, 2005, 25(5): 477-480. doi: 10.11883/1001-1455(2005)05-0477-04 |