Citation: | ZHANG Yunfeng, CHEN Bo, WEI Xin, LI Hao, WU Ke, SUI Yaguang, FANG Long. Numerical modeling and application of shock wave of free-field air explosion[J]. Explosion And Shock Waves, 2023, 43(11): 114202. doi: 10.11883/bzycj-2023-0004 |
[1] |
BANGASH M Y H, BANGASH T. Explosion-resistant buildings, design, analysis, and case studies [M]. Berlin: Springer, 2006. DOI: 10.1007/3-540-31289-7.
|
[2] |
CORMIE D, MAYS G, SMITH P. Blast effects on buildings [M]. 3rd ed. London: ICE Publishing, 2020.
|
[3] |
ZHOU Q, HE H G, LIU S F, et al. Blast resistance evaluation of urban utility tunnel reinforced with BFRP bars [J]. Defence Technology, 2021, 17(2): 512–530. DOI: 10.1016/j.dt.2020.03.015.
|
[4] |
HUANG X, BAO H R, HAO Y F, et al. Damage assessment of two-way RC slab subjected to blast load using mode approximation approach [J]. International Journal of Structural Stability and Dynamics, 2017, 17(1): 1750013. DOI: 10.1142/S0219455417500134.
|
[5] |
LANGENDERFER M, WILLIAMS K, DOUGLAS A, et al. An evaluation of measured and predicted air blast parameters from partially confined blast waves [J]. Shock Waves, 2021, 31(2): 175–192. DOI: 10.1007/s00193-021-00993-0.
|
[6] |
TAN C M M. Rapid estimation of building damage by conventional weapons [M]. US: Naval Postgraduate School, 2014.
|
[7] |
BOGOSIAN D, FERRITTO J, SHI Y J. Measuring uncertainty and conservatism in simplified blast models [C]// Proceedings of the 30th Explosives Safety Seminar. Atlanta, Georgia, US, 2002.
|
[8] |
马涛. 空气中爆炸波快速算法研究 [D]. 长沙: 国防科学技术大学, 2014.
MA T. The study for fast computation of blast wave in air [D]. Changsha: National University of Defense Technology, 2014.
|
[9] |
NEEDHAM C E. Blast waves [M]. 2nd ed. Cham: Springer, 2018. DOI: 10.1007/978-3-319-65382-2.
|
[10] |
US Army Corps of Engineers. Structures to resist the effects of accidental explosions: UFC 3-340-02 [S]. USA: Department of Defense of USA, 2008.
|
[11] |
DUSENBERRY D, SCHMIDT J, HOBELMANN P, et al. Blast protection of buildings: ASCE/SEI 59-11 [S]. USA: American Society of Civil Engineers, 2011. DOI: 10.1061/9780784411889.
|
[12] |
ABRAHAM J, STEWART C. Shock 2.0 theory manual: TR-NAVFAC ESC-CI-1101 [M]. 2011.
|
[13] |
杨亚东, 李向东, 王晓鸣. 长方体密闭结构内爆炸冲击波传播与叠加分析模型 [J]. 兵工学报, 2016, 37(8): 1449–1455. DOI: 10.3969/j.issn.1000-1093.2016.08.016.
YANG Y D, LI X D, WANG X M. An analytical model for propagation and superposition of internal explosion shockwaves in closed cuboid structure [J]. Acta Armamentarii, 2016, 37(8): 1449–1455. DOI: 10.3969/j.issn.1000-1093.2016.08.016.
|
[14] |
Numerics Software. Fl-blast v1.1 theory manual [M]. Germany: Numerics Software, 2017.
|
[15] |
FRANK S, FRANK R, HURLEY J. Fast-running model for arbitrary room airblast [C]// Proceedings of the International Symposium for the Interaction of the Effects of Munitions on Structures (ISIEMS 12.1). Orlando, FL, 2007.
|
[16] |
CAMPIDELLI M, VIOLA E. An analytical–numerical method to analyze single degree of freedom models under airblast loading [J]. Journal of Sound and Vibration, 2007, 302(1/2): 260–286. DOI: 10.1016/j.jsv.2006.11.024.
|
[17] |
张玉涛, 田玄鑫, 孙贝生, 等. 爆炸冲击波载荷特征对冲击响应谱影响规律研究 [J]. 舰船科学技术, 2019, 41(6): 48–52. DOI: 10.3404/j.issn.1672-7469.2019.06.010.
ZHANG Y T, TIAN X X, SUN B S, et al. Research on the influence of the wave spectrum characteristics on the shock response of explosion shock load [J]. Ship Science and Technology, 2019, 41(6): 48–52. DOI: 10.3404/j.issn.1672-7469.2019.06.010.
|
[18] |
XIAO W F, ANDRAE M, GEBBEKEN N. Air blast TNT equivalence factors of high explosive material PETN for bare charges [J]. Journal of Hazardous Materials, 2019, 377: 152–162. DOI: 10.1016/j.jhazmat.2019.05.078.
|
[19] |
XIAO W F, ANDRAE M, GEBBEKEN N. Air blast TNT equivalence concept for blast-resistant design [J]. International Journal of Mechanical Sciences, 2020, 185: 105871. DOI: 10.1016/j.ijmecsci.2020.105871.
|
[20] |
KINNEY G F, GRAHAM K J. Explosive shocks in air [M]. 2nd ed. Berlin: Springer, 1985. DOI: 10.1007/978-3-642-86682-1.
|
[21] |
BAKER W E. 空中爆炸 [M]. 江科, 译. 北京: 原子能出版社, 1982.
BAKER W E. Explosions in air [M]. JIANG K, trans. Beijing: Atomic Energy Press, 1982.
|
[22] |
程祥, 杨明, 郭亚丽, 等. 修正的Friedlander方程指数衰减因子 [J]. 爆炸与冲击, 2009, 29(4): 425–428. DOI: 10.11883/1001-1455(2009)04-0425-04.
CHENG X, YANG M, GUO Y L, et al. Analysis on an exponential attenuation factor in the modified Friedlander equation by overpressure tests [J]. Explosion and Shock Waves, 2009, 29(4): 425–428. DOI: 10.11883/1001-1455(2009)04-0425-04.
|
[23] |
杨科之, 刘盛. 空气冲击波传播和衰减研究进展 [J]. 防护工程, 2020, 42(3): 1–10. DOI: 10.3969/j.issn.1674-1854.2020.03.001.
YANG K Z, LIU S. Progress of research on propagation and attenuation of air blast [J]. Protective Engineering, 2020, 42(3): 1–10. DOI: 10.3969/j.issn.1674-1854.2020.03.001.
|
[24] |
RANDERS-PEHRSON G, BANNISTER K A. Airblast loading model for DYNA2D and DYNA3D: ARL-TR-1310 [R]. USA: Army Research Laboratory, 1997.
|
[25] |
XUE Z Q, LI S P, XIN C L, et al. Modeling of the whole process of shock wave overpressure of free-field air explosion [J]. Defence Technology, 2019, 15(5): 815–820. DOI: 10.1016/j.dt.2019.04.014.
|
[26] |
DEWEY J M. Addendum: an interface to provide the physical properties of blast waves generated by propane explosions [J]. Shock Waves, 2020, 30(4): 439–441. DOI: 10.1007/s00193-020-00945-0.
|
[27] |
DEWEY J M. An interface to provide the physical properties of the blast wave from a free-field TNT explosion [J]. Shock Waves, 2022, 32(4): 383–390. DOI: 10.1007/s00193-022-01076-4.
|
[28] |
DOBRATZ B M, CRAWFORD P C. LLNL explosives handbook: properties of chemical explosives and explosive simulants: UCRL-52997-Chg. 2 [R]. Livermore: Lawrence Livermore National Laboratory, 1985.
|
[29] |
SHERKAR P, SHIN J, WHITTAKER A, et al. Influence of charge shape and point of detonation on blast-resistant design [J]. Journal of Structural Engineering, 2016, 142(2): 04015109. DOI: 10.1061/(ASCE)ST.1943-541X.0001371.
|
[30] |
XIAO W F, ANDRAE M, GEBBEKEN N. Effect of charge shape and initiation configuration of explosive cylinders detonating in free air on blast-resistant design [J]. Journal of Structural Engineering, 2020, 146(8): 04020146. DOI: 10.1061/(ASCE)ST.1943-541X.0002694.
|
[31] |
BRODE H L. A calculation of the blast wave from a spherical charge of TNT: AD 144302 [R]. US Air Force, 1957.
|
[32] |
LUTSKY M. The flow behind a spherical detonation in TNT using the Landau-Stanyukovich equation of state for detonation products: NOL-TR 64-40 [R]. White Oak: U. S. Naval Ordnance Laboratory, 1965.
|
[33] |
杜红棉, 曹学友, 何志文, 等. 近地爆炸空中和地面冲击波特性分析和验证 [J]. 弹箭与制导学报, 2014, 34(4): 65–68. DOI: 10.3969/j.issn.1637-9728.2014.04.018.
DU H M, CAO X Y, HE Z W, et al. Analysisand validation for characteristics of air and ground shock wave near field explosion [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2014, 34(4): 65–68. DOI: 10.3969/j.issn.1637-9728.2014.04.018.
|
[34] |
GAJEWSKI T, SIELICKI P W. Experimental study of blast loading behind a building corner [J]. Shock Waves, 2020, 30(4): 385–394. DOI: 10.1007/s00193-020-00936-1.
|
[35] |
贾雷明, 王澍霏, 田宙. 爆炸冲击波反射流场的理论计算方法 [J]. 爆炸与冲击, 2019, 39(6): 064201. DOI: 10.11883/bzycj-2018-0167.
JIA L M, WANG S F, TIAN Z. A theoretical method for the calculation of flow field behind blast reflected waves [J]. Explosion and Shock Waves, 2019, 39(6): 064201. DOI: 10.11883/bzycj-2018-0167.
|
[36] |
XIAO W, ANDRAE M, GEBBEKEN N. Development of a new empirical formula for prediction of triple point path [J]. Shock Waves, 2020, 30(6): 677–686. DOI: 10.1007/s00193-020-00968-7.
|
[37] |
NEEDHAM C E. Blast loads and propagation around and over a building [M]//HANNEMANN K, SEILER F. Shock Waves. Berlin: Springer, 2009. DOI: 10.1007/978-3-540-85181-3.
|