Citation: | JI Yuguo, ZHANG Guokai, LI Gan, DENG Shuxin, YAO Jian, LI Jie, WANG Mingyang, HE Yong. Explosion characteristics of thermobaric explosive (TBX) detonated inside a tunnel and the related influential factors[J]. Explosion And Shock Waves, 2024, 44(3): 032301. doi: 10.11883/bzycj-2023-0011 |
[1] |
杨科之, 杨秀敏. 坑道内化爆冲击波的传播规律 [J]. 爆炸与冲击, 2003, 23(1): 37–40.
YANG K Z, YANG X M. Shock waves propagation inside tunnels [J]. Explosion and Shock Waves, 2003, 23(1): 37–40.
|
[2] |
BENSELAMA A M, WILLIAM-LOUIS M J P, MONNOYER F, et al. A numerical study of the evolution of the blast wave shape in tunnels [J]. Journal of Hazardous Materials, 2010, 181(1/2/3): 609–616. DOI: 10.1016/j.jhazmat.2010.05.056.
|
[3] |
UYSTEPRUYST D, MONNOYER F. A numerical study of the evolution of the blast wave shape in rectangular tunnels [J]. Journal of Loss Prevention in the Process Industries, 2015, 34: 225–231. DOI: 10.1016/j.jlp.2015.03.003.
|
[4] |
胡宏伟, 宋浦, 邓国强, 等. 温压炸药的特性及发展现状 [J]. 力学进展, 2022, 52(1): 53–78. DOI: 10.6052/1000-0992-21-021.
HU H W, SONG P, DENG G Q, et al. Characteristics of thermobaric explosives and their advances [J]. Advances in Mechanics, 2022, 52(1): 53–78. DOI: 10.6052/1000-0992-21-021.
|
[5] |
ARNOLD W, ROTTENKOLBER E. Thermobaric charges: modeling and testing [C]//Proceedings of the 38th International Annual Conference of ICT. Karlsruhe, Germany, 2007: V02.
|
[6] |
HAHMA A, PALOVUORI K, ROMU H. Experimental studies on metal fueled thermobaric explosives [C]//Proceedings of the 35th International Annual Conference of ICT. Karlsruhe, Germany: ICT, 2006.
|
[7] |
MOHAMED A K, MOSTAFA H E, ELBASUNEY S. Nanoscopic fuel-rich thermobaric formulations: chemical composition optimization and sustained secondary combustion shock wave modulation [J]. Journal of Hazardous Materials, 2016, 301: 492–503. DOI: 10.1016/j.jhazmat.2015.09.019.
|
[8] |
赵新颖, 王伯良, 李席, 等. 温压炸药爆炸冲击波在爆炸堡内的传播规律 [J]. 含能材料, 2016, 24(3): 231–237. DOI: 10.11943/j.issn.1006-9941.2016.03.004.
ZHAO X Y, WANG B L, LI X, et al. Shockwave propagation characteristics of thermobaric explosive in an explosion chamber [J]. Chinese Journal of Energetic Materials, 2016, 24(3): 231–237. DOI: 10.11943/j.issn.1006-9941.2016.03.004.
|
[9] |
ZHANG F, ANDERSON J, YOSHINAKA A. Post-detonation energy release from TNT-aluminum explosives [J]. AIP Conference Proceedings, 2007, 955(1): 885–888. DOI: 10.1063/1.2833268.
|
[10] |
PEUKER J M, KRIER H, GLUMAC N. Particle size and gas environment effects on blast and overpressure enhancement in aluminized explosives [J]. Proceedings of the Combustion Institute, 2013, 34(2): 2205–2212. DOI: 10.1016/j.proci.2012.05.069.
|
[11] |
KIM C K, LAI M C, ZHANG Z C, et al. Modeling and numerical simulation of afterburning of thermobaric explosives in a closed chamber [J]. International Journal of Precision Engineering and Manufacturing, 2017, 18(7): 979–986. DOI: 10.1007/s12541-017-0115-3.
|
[12] |
李根, 卢芳云, 李翔宇, 等. 基于气固两相反应流的温压炸药能量释放规律数值模拟及实验验证 [J]. 火炸药学报, 2021, 44(2): 195–204. DOI: 10.14077/j.issn.1007-7812.202012021.
LI G, LU F Y, LI X Y, et al. Numerical simulation and experimental verification on the energy release law of thermostatic explosive based on gas-solid two-phase reaction flow [J]. Chinese Journal of Explosives & Propellants, 2021, 44(2): 195–204. DOI: 10.14077/j.issn.1007-7812.202012021.
|
[13] |
耿振刚, 李秀地, 苗朝阳, 等. 温压炸药爆炸冲击波在坑道内的传播规律研究 [J]. 振动与冲击, 2017, 36(5): 23–29. DOI: 10.13465/j.cnki.jvs.2017.05.005.
GENG Z G, LI X D, MIAO C Y, et al. Propagation of blast wave of thermobaric explosive inside a tunnel [J]. Journal of Vibration and Shock, 2017, 36(5): 23–29. DOI: 10.13465/j.cnki.jvs.2017.05.005.
|
[14] |
苟兵旺, 李芝绒, 闫潇敏, 等. 复杂坑道内温压炸药冲击波效应试验研究 [J]. 火工品, 2014(2): 41–45. DOI: 10.3969/j.issn.1003-1480.2014.02.014.
GOU B W, LI Z R, YAN X M, et al. Experimental study on shock wave effects of thermo-baric explosive in complex tunnel [J]. Initiators & Pyrotechnics, 2014(2): 41–45. DOI: 10.3969/j.issn.1003-1480.2014.02.014.
|
[15] |
茅靳丰, 陈飞, 侯普民. 温压炸药坑道口部爆炸冲击波毁伤效应研究 [J]. 力学季刊, 2016, 37(1): 184–193. DOI: 10.15959/j.cnki.0254-0053.2016.01.022.
MAO J F, CHEN F, HOU P M. Study on shock wave damage effects of thermobaric explosive explosion in tunnel entrance [J]. Chinese Quarterly of Mechanics, 2016, 37(1): 184–193. DOI: 10.15959/j.cnki.0254-0053.2016.01.022.
|
[16] |
孔霖, 苏健军, 李芝绒, 等. 不同装药坑道内爆炸冲击波传播规律的试验研究 [J]. 火工品, 2012(3): 21–24. DOI: 10.3969/j.issn.1003-1480.2012.03.006.
KONG L, SU J J, LI Z R, et al. Test study on explosion shock wave propagation of different explosives inside tunnels [J]. Initiators & Pyrotechnics, 2012(3): 21–24. DOI: 10.3969/j.issn.1003-1480.2012.03.006.
|
[17] |
李世民, 李晓军, 李洪鑫. 温压炸药坑道内爆炸冲击波的数值模拟研究 [J]. 应用力学学报, 2012, 29(5): 595–600. DOI: 10.11776/cjam.29.05.B086.
LI S M, LI X J, LI H X. Numerical simulation study of airblast of thermobaric explosive explosion in tunnel [J]. Chinese Journal of Applied Mechanics, 2012, 29(5): 595–600. DOI: 10.11776/cjam.29.05.B086.
|
[18] |
徐利娜, 雍顺宁, 王凤丹, 等. 直坑道内爆炸冲击波超压传播规律研究 [J]. 测试技术学报, 2014, 28(2): 114–118. DOI: 10.3969/j.issn.1671-7449.2014.02.005.
XU L N, YONG S N, WANG F D, et al. Study of blast wave overpressure propagation inside straight tunnel [J]. Journal of Test and Measurement Technology, 2014, 28(2): 114–118. DOI: 10.3969/j.issn.1671-7449.2014.02.005.
|
[19] |
田培培. 温压药剂爆炸高温场特性红外测试技术研究 [D]. 太原: 中北大学, 2016.
TIAN P P. The research on characteristics of high temperature explosion field of thermobaric explosive with infrared testing technology [D]. Taiyuan: North University of China, 2016.
|
[20] |
许仁翰, 周钇捷, 狄长安. 基于高速成像的爆炸温度场测试方法 [J]. 兵工学报, 2021, 42(3): 640–647. DOI: 10.3969/j.issn.1000-1093.2021.03.021.
XU R H, ZHOU Y J, DI C A. A temperature measuring method for explosive temperature field based on high-speed imaging technology [J]. Acta Armamentarii, 2021, 42(3): 640–647. DOI: 10.3969/j.issn.1000-1093.2021.03.021.
|
[21] |
仲倩, 王伯良, 王凤丹, 等. 温压炸药爆炸过程的瞬态温度 [J]. 含能材料, 2011, 19(2): 204–208. DOI: 10.3969/j.issn.1006-9941.2011.02.018.
ZHONG Q, WANG B L, WANG F D, et al. Explosion temperature of thermobaric explosive [J]. Chinese Journal of Energetic Materials, 2011, 19(2): 204–208. DOI: 10.3969/j.issn.1006-9941.2011.02.018.
|
[22] |
LIU Z P, LIU S H, ZHAO J X, et al. A transient heat flux sensor based on the transverse Seebeck effect of single crystal Bi2Te3 [J]. Measurement, 2022, 198: 111419. DOI: 10.1016/j.measurement.2022.111419.
|
[23] |
纪玉国, 张国凯, 李干, 等. 坑道口部温压炸药爆炸热效应与冲击波传播规律实验研究 [J]. 南京理工大学学报, 2022, 46(6): 649–658. DOI: 10.14177/j.cnki.32-1397n.2022.46.06.001.
JI Y G, ZHANG G K, LI G, et al. Experimental study on thermal effect and shock wave propagation of thermobaric explosives at tunnel entrance [J]. Journal of Nanjing University of Science and Technology, 2022, 46(6): 649–658. DOI: 10.14177/j.cnki.32-1397n.2022.46.06.001.
|
[24] |
LV S S, ZHANG J Q, NI H J, et al. Research status and progress of oxygen sensor [J]. Journal of Physics: Conference Series, 2019, 1345(3): 032029. DOI: 10.1088/1742-6596/1345/3/032029.
|
[25] |
奥尔连科Л П. 爆炸物理学 [M]. 孙承纬, 译. 北京: 科学出版社, 2011.
OPЛEHKO Л П. Explosion physics [M]. SUN C W, trans. Beijing: Science Press, 2011.
|
[26] |
肖伟. 助燃剂对含铝炸药爆炸特性的影响及其释能规律研究 [D]. 南京: 南京理工大学, 2021.
|
[27] |
陈海天, 李秀地, 郑颖人. 内爆炸坑道中冲击波冲量试验 [J]. 后勤工程学院学报, 2008, 24(2): 6–8,13. DOI: 10.3969/j.issn.1672-7843.2008.02.002.
CHEN H T, LI X D, ZHENG Y R. Scale model tests to determine in-tunnel blast impulse from he-charges inside the tunnel entrance [J]. Journal of Logistical Engineering University, 2008, 24(2): 6–8,13. DOI: 10.3969/j.issn.1672-7843.2008.02.002.
|
[28] |
丁彤, 裴红波, 郭文灿, 等. RDX基含铝炸药爆轰波结构实验研究 [J]. 爆炸与冲击, 2022, 42(6): 062301. DOI: 10.11883/bzycj-2021-0217.
DING T, PEI H B, GUO W C, et al. Experimental study on detonation wave profiles in RDX-based aluminized explosives [J]. Explosion and Shock Waves, 2022, 42(6): 062301. DOI: 10.11883/bzycj-2021-0217.
|
[29] |
KEELEY J E. Fire intensity, fire severity and burn severity: a brief review and suggested usage [J]. International Journal of Wildland Fire, 2009, 18(1): 116. DOI: 10.1071/WF07049.
|
1. | 江丙友,洪汉,苏明清,鲁昆仑,杨炳辉,王培龙,丁大伟. 密闭管道内瓦斯爆炸卷扬沉积煤尘爆炸传播特性. 煤炭学报. 2024(04): 1941-1951 . ![]() | |
2. | 裴蓓,张子阳,潘荣锟,余明高,陈立伟,温小萍. 不同强度冲击波诱导沉积煤尘爆炸火焰传播特性. 煤炭学报. 2021(02): 498-506 . ![]() | |
3. | 杨前意,石必明,张雷林,张鸿智,王超. 不同含水率煤尘在瓦斯爆炸诱导下爆炸传播规律研究. 中国安全生产科学技术. 2019(03): 25-29 . ![]() | |
4. | 景国勋,刘闯,段新伟,郭邵帅,张胜旗,吴昱楼,邵泓源. 半封闭管道内瓦斯-煤尘耦合爆炸实验研究. 煤炭学报. 2019(S1): 157-163 . ![]() | |
5. | 李海涛,陈晓坤,邓军,文虎,罗振敏,王秋红,张嬿妮,翟小伟. 湍流状态下竖直管道内甲烷-煤尘预混特征及爆炸过程数值模拟. 煤炭学报. 2018(06): 1769-1779 . ![]() | |
6. | 屈姣,邓军,王秋红,王彩萍. 褐煤煤尘云在不同环境气氛的燃爆特性. 西安科技大学学报. 2018(04): 546-552 . ![]() | |
7. | 李雨成,刘天奇,周西华. 基于量纲分析理论的煤尘爆炸能量预测模型. 爆炸与冲击. 2017(03): 566-570 . ![]() | |
8. | 李雨成,刘天奇,周西华,刘蓉蒸. 携煤尘高压气流诱导沉积煤粉爆炸火焰特性研究. 中国安全科学学报. 2017(05): 58-63 . ![]() | |
9. | 魏明生,童敏明,梁良,王华睿. 矿井煤尘粒度和浓度实时在线检测系统实验研究. 煤矿安全. 2016(05): 30-33 . ![]() | |
10. | 李雨成,刘天奇,周西华. 煤尘爆炸危险等级模糊结构元综合决策研究. 中国安全科学学报. 2016(02): 67-72 . ![]() | |
11. | 李雨成,刘天奇,周西华. 煤尘爆炸火焰传播特性因子分析与BP网络组合预测研究. 中国安全科学学报. 2015(10): 53-58 . ![]() | |
12. | 司荣军. 瓦斯煤尘爆炸研究现状及发展趋势. 矿业安全与环保. 2014(01): 72-75+79 . ![]() | |
13. | 邓军,屈姣,王秋红. 煤矿瓦斯煤尘燃烧与爆炸研究现状及展望. 煤矿现代化. 2014(05): 96-99 . ![]() | |
14. | 尉存娟,谭迎新,胡双启,侯万兵. 瓦斯爆炸诱导瓦斯-煤尘二次爆炸的试验研究. 中国安全科学学报. 2014(12): 29-32 . ![]() | |
15. | 李润之. 不同总量沉积煤尘在瓦斯爆炸诱导下的传播规律模拟研究. 矿业安全与环保. 2013(01): 17-20+25 . ![]() | |
16. | 刘丹,李润之,司荣军,张延松. 瓦斯爆炸诱导沉积煤尘参与爆炸作用模式. 煤炭学报. 2011(11): 1879-1883 . ![]() |