Volume 43 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
ZHU Chao, ZHANG Xiaowei, ZHANG Qingming, ZHANG Tao. Structural response and failure of projectiles obliquely penetrating into double-layered steel plate targets[J]. Explosion And Shock Waves, 2023, 43(9): 091408. doi: 10.11883/bzycj-2023-0017
Citation: ZHU Chao, ZHANG Xiaowei, ZHANG Qingming, ZHANG Tao. Structural response and failure of projectiles obliquely penetrating into double-layered steel plate targets[J]. Explosion And Shock Waves, 2023, 43(9): 091408. doi: 10.11883/bzycj-2023-0017

Structural response and failure of projectiles obliquely penetrating into double-layered steel plate targets

doi: 10.11883/bzycj-2023-0017
  • Received Date: 2023-01-17
  • Rev Recd Date: 2023-05-09
  • Available Online: 2023-06-02
  • Publish Date: 2023-09-11
  • In order to investigate the structural response and failure of projectiles obliquely penetrating into a multi-layered steel plate target, oblique penetration tests were conducted, in which three kinds of projectiles with circular, elliptical, and asymmetric elliptical cross-sections were employed while the ballistic trajectory and structural failure of projectiles were recorded. With the photographs captured by high-speed camera, a pixel measuring method was used to obtain the velocity and attitude deflection angle of projectiles. Based on the test results, the ballistic characteristics, dynamic loads and structural response of projectiles are analyzed by using FEM code ABAQUS/explicit, focusing on the oblique penetration at initial speed of 480 m/s and attack angle within 2°. Then, based on the free-free beam theory and the dynamic loads obtained by numerical simulation, the distributions of axial force, shear force and bending moment within projectiles are calculated, and an analytical method for structural strength and dynamic failure of projectiles is developed. The results show that when the projectile horizontally penetrates a multi-layered steel plate target with positive inclined angle, there exists a critical attack angle. If the attack angle is smaller than this critical value, the projectile will head drop and its trajectory turns downwards; when the attack angle is larger than the critical value, the projectile will be raised and its trajectory turns upwards. In addition, the critical attack angle increases as the thickness of the target plate decreases. For the projectiles with high strength and low ductility, the failure mode is brittle fracture and the distances between the fracture position and the projectile nose is 0.72−0.81 times of its length, which is mainly due to the lateral impact load at the rear part of projectile. Moreover, by means of the dynamic model of the projectile based on the free-free beam theory, the fracture position of projectile during oblique penetration process could be well predicted. Also, among the three types of projectiles with the same length and cross-sectional area, the projectile with asymmetric elliptical cross-section is easier to fracture and the position is even closer to the projectile nose.
  • loading
  • [1]
    FREW D J, FORRESTAL M J, HANCHAK S J. Penetration experiments with limestone targets and ogive-nose steel projectiles [J]. Journal of Applied Mechanics, 2000, 67(4): 841–845. DOI: 10.1115/1.1331283.
    [2]
    CHEN X W, FAN S C, LI Q M. Oblique and normal perforation of concrete targets by a rigid projectile [J]. International Journal of Impact Engineering, 2004, 30(6): 617–637. DOI: 10.1016/j.ijimpeng.2003.08.003.
    [3]
    LI Q M, FLORES-JOHNSON E A. Hard projectile penetration and trajectory stability [J]. International Journal of Impact Engineering, 2011, 38(10): 815–823. DOI: 10.1016/j.ijimpeng.2011.05.005.
    [4]
    段卓平, 李淑睿, 马兆芳, 等. 刚性弹体斜侵彻贯穿混凝土靶的姿态偏转理论模型 [J]. 爆炸与冲击, 2019, 39(6): 063302. DOI: 10.11883/bzycj-2018-0411.

    DUAN Z P, LI S R, MA Z F, et al. Analytical model for attitude deflection of rigid projectile during oblique perforation of concrete targets [J]. Explosion and Shock Waves, 2019, 39(6): 063302. DOI: 10.11883/bzycj-2018-0411.
    [5]
    闪雨. 弹体非正侵彻混凝土质量侵蚀与运动轨迹研究 [D]. 北京: 北京理工大学, 2015.

    SHAN Y. Investigation on the mass abrasion and motion of the projectile non-normal penetrating into concrete [D]. Beijing: Beijing Institute of Technology, 2015.
    [6]
    GOLDSMITH W. Non-ideal projectile impact on targets [J]. International Journal of Impact Engineering, 1999, 22(2/3): 95–395. DOI: 10.1016/S0734-743X(98)00031-1.
    [7]
    GUPTA N K, MADHU V. An experimental study of normal and oblique impact of hard-core projectile on single and layered plates [J]. International Journal of Impact Engineering, 1997, 19(5/6): 395–414. DOI: 10.1016/S0734-743X(97)00001-8.
    [8]
    IQBAL M A, DIWAKAR A, RAJPUT A, et al. Influence of projectile shape and incidence angle on the ballistic limit and failure mechanism of thick steel plates [J]. Theoretical and Applied Fracture Mechanics, 2012, 62: 40–53. DOI: 10.1016/j.tafmec.2013.01.005.
    [9]
    IQBAL M A, SENTHIL K, MADHU V, et al. Oblique impact on single, layered and spaced mild steel targets by 7.62 AP projectiles [J]. International Journal of Impact Engineering, 2017, 110: 26–38. DOI: 10.1016/j.ijimpeng.2017.04.011.
    [10]
    杜华池, 张先锋, 刘闯, 等. 弹体斜侵彻多层间隔钢靶的弹道特性 [J]. 兵工学报, 2021, 42(6): 1204–1214. DOI: 10.3969/j.issn.1000-1093.2021.06.010.

    DU H C, ZHANG X F, LIU C, et al. Trajectory characteristics of projectile obliquely penetrating into steel target with multi-layer space structure [J]. Acta Armamentarii, 2021, 42(6): 1204–1214. DOI: 10.3969/j.issn.1000-1093.2021.06.010.
    [11]
    王文杰, 张先锋, 邓佳杰, 等. 椭圆截面弹体侵彻砂浆靶规律分析 [J]. 爆炸与冲击, 2018, 38(1): 164–173. DOI: 10.11883/bzycj-2017-0020.

    WANG W J, ZHANG X F, DENG J J, et al. Analysis of projectile penetrating into mortar target with elliptical cross-section [J]. Explosion and Shock Waves, 2018, 38(1): 164–173. DOI: 10.11883/bzycj-2017-0020.
    [12]
    DONG H, LIU Z H, WU H J, et al. Study on penetration characteristics of high-speed elliptical cross-sectional projectiles into concrete [J]. International Journal of Impact Engineering, 2019, 132: 103311. DOI: 10.1016/j.ijimpeng.2019.05.025.
    [13]
    刘子豪. 椭圆截面异型弹体高速侵彻混凝土特性研究 [D]. 北京: 北京理工大学, 2018. DOI: 10.26948/d.cnki.gbjlu.2018.000438.

    LIU Z H. Study on the characteristics of high-speed elliptical cross section projectile penetrating into concrete [D]. Beijing: Beijing Institute of Technology, 2018. DOI: 10.26948/d.cnki.gbjlu.2018.000438.
    [14]
    DAI X H, WANG K H, LI M R, et al. Rigid elliptical cross-section ogive-nose projectiles penetration into concrete targets [J]. Defence Technology, 2021, 17(3): 800–811. DOI: 10.1016/j.dt.2020.05.011.
    [15]
    王浩, 武海军, 闫雷, 等. 椭圆横截面弹体斜贯穿双层间隔薄钢板失效模式 [J]. 兵工学报, 2020, 41(S2): 1–11.

    WANG H, WU H J, YAN L, et al. Failure mode of oblique perforation of truncated ogive-nosed projectiles with elliptic cross-section into double-layered thin steel plate with gap space [J]. Acta Armamentarii, 2020, 41(S2): 1–11.
    [16]
    田泽, 王浩, 武海军, 等. 椭圆变截面弹体斜贯穿薄靶姿态偏转机理 [J]. 兵工学报, 2022, 43(7): 1537–1552. DOI: 10.12382/bgxb.2021.0367.

    TIAN Z, WANG H, WU H J, et al. Attitude deflection mechanism of projectiles with variable elliptical cross-sections obliquely perforating thin targets [J]. Acta Armamentarii, 2022, 43(7): 1537–1552. DOI: 10.12382/bgxb.2021.0367.
    [17]
    岳胜哲, 陈利, 张晓伟, 等. 非对称类椭圆截面弹体斜贯穿铝靶数值模拟研究 [J]. 兵器装备工程学报, 2022, 43(4): 127–133. DOI: 10.11809/bqzbgcxb2022.04.021.

    YUE S Z, CHEN L, ZHANG X W, et al. Numerical simulation of oblique penetration of shaped elliptical cross section projectile through aluminum target [J]. Journal of Ordnance Equipment Engineering, 2022, 43(4): 127–133. DOI: 10.11809/bqzbgcxb2022.04.021.
    [18]
    王景琛, 张晓伟, 张庆明, 等. 非圆截面弹体斜侵彻薄靶的动态载荷特性研究 [J]. 兵器装备工程学报, 2023, 44(1): 127–135. DOI: 10.11809/bqzbgcxb2023.01.020.

    WANG J C, ZHANG X W, ZHANG Q M, et al. Study on dynamic load characteristics of a non-circular cross-section projectile obliquely penetrating into thin targets [J]. Journal of Ordnance Equipment Engineering, 2023, 44(1): 127–135. DOI: 10.11809/bqzbgcxb2023.01.020.
    [19]
    WU H J, WANG Y N, HUANG F L. Penetration concrete targets experiments with non-ideal & high velocity between 800 and 1100 m/s [J]. International Journal of Modern Physics B, 2008, 22(09N11): 1087–1093. DOI: 10.1142/S0217979208046360.
    [20]
    SILLING S A, FORRESTAL M J. Mass loss from abrasion on ogive-nose steel projectiles that penetrate concrete targets [J]. International Journal of Impact Engineering, 2007, 34(11): 1814–1820. DOI: 10.1016/j.ijimpeng.2006.10.008.
    [21]
    何翔, 徐翔云, 孙桂娟, 等. 弹体高速侵彻混凝土的效应实验 [J]. 爆炸与冲击, 2010, 30(1): 1–6. DOI: 10.11883/1001-1455(2010)01-0001-06.

    HE X, XU X Y, SUN G J, et al. Experimental investigation on projectiles’ high-velocity penetration into concrete targets [J]. Explosion and Shock Waves, 2010, 30(1): 1–6. DOI: 10.11883/1001-1455(2010)01-0001-06.
    [22]
    武海军, 黄风雷, 王一楠, 等. 高速侵彻混凝土弹体头部侵蚀终点效应实验研究 [J]. 兵工学报, 2012, 33(1): 48–55.

    WU H J, HUANG F L, WANG Y N, et al. Experimental investigation on projectile nose eroding effect of high-velocity penetration into concrete [J]. Acta Armamentarii, 2012, 33(1): 48–55.
    [23]
    HE L L, CHEN X W. Analyses of the penetration process considering mass loss [J]. European Journal of Mechanics-A/Solids, 2011, 30(2): 145–157. DOI: 10.1016/j.euromechsol.2010.10.004.
    [24]
    ZHAO J, CHEN X W, JIN F N, et al. Analysis on the bending of a projectile induced by asymmetrical mass abrasion [J]. International Journal of Impact Engineering, 2012, 39(1): 16–27. DOI: 10.1016/j.ijimpeng.2011.09.001.
    [25]
    陈小伟. 动能深侵彻弹的力学设计(Ⅰ): 侵彻/穿甲理论和弹体壁厚分析 [J]. 爆炸与冲击, 2005, 25(6): 499–505. DOI: 10.11883/1001-1455(2005)06-0499-07.

    CHEN X W. Mechanics of structural design of EPW(Ⅰ): the penetration/perforation theory and the analysis on the cartridge of projectile [J]. Explosion and Shock Waves, 2005, 25(6): 499–505. DOI: 10.11883/1001-1455(2005)06-0499-07.
    [26]
    陈小伟, 金建明. 动能深侵彻弹的力学设计(Ⅱ): 弹靶的相关力学分析与实例 [J]. 爆炸与冲击, 2006, 26(1): 71–78. DOI: 10.11883/1001-1455(2006)01-0071-08.

    CHEN X W, JIN J M. Mechanics of structural design of EPW(Ⅱ): analyses on the design of EPW projectiles, concrete targets and examples [J]. Explosion and Shock Waves, 2006, 26(1): 71–78. DOI: 10.11883/1001-1455(2006)01-0071-08.
    [27]
    皮爱国, 黄风雷. 大长细比弹体斜侵彻混凝土靶的动力学响应 [J]. 爆炸与冲击, 2007, 27(4): 331–338. DOI: 10.11883/1001-1455(2007)04-0331-08.

    PI A G, HUANG F L. Dynamic behavior of a slender projectile on oblique penetrating into concrete target [J]. Explosion and Shock Waves, 2007, 27(4): 331–338. DOI: 10.11883/1001-1455(2007)04-0331-08.
    [28]
    王一楠, 黄风雷, 段卓平. 小攻角条件下动能弹体高速侵彻混凝土靶的弹体弯曲 [J]. 爆炸与冲击, 2010, 30(6): 598–606. DOI: 10.11883/1001-1455(2010)06-0598-09.

    WANG Y N, HUANG F L, DUAN Z P. Bending of projectile with small angle of attack during high-speed penetration of concrete targets [J]. Explosion and Shock Waves, 2010, 30(6): 598–606. DOI: 10.11883/1001-1455(2010)06-0598-09.
    [29]
    张欣欣, 武海军, 黄风雷, 等. 斜侵彻混凝土靶的刻槽弹体的结构响应 [J]. 爆炸与冲击, 2019, 39(3): 033301. DOI: 10.11883/bzycj-2017-0047.

    ZHANG X X, WU H J, HUANG F L, et al. Structural response of the concrete target obliquely penetrated by a grooved-tapered projectile [J]. Explosion and Shock Waves, 2019, 39(3): 033301. DOI: 10.11883/bzycj-2017-0047.
    [30]
    刘坚成, 张雷雷, 徐坤, 等. 反弹道非正侵彻的弹体结构响应实验研究 [J]. 兵工学报, 2019, 40(9): 1797–1803. DOI: 10.3969/j.issn.1000-1093.2019.09.005.

    LIU J C, ZHANG L L, XU K, et al. Structural response of projectile in reverse ballistic non-normal penetrating experiment [J]. Acta Armamentarii, 2019, 40(9): 1797–1803. DOI: 10.3969/j.issn.1000-1093.2019.09.005.
    [31]
    李磊, 张先锋, 吴雪, 等. 不同硬度30CrMnSiNi2A钢的动态本构与损伤参数 [J]. 高压物理学报, 2017, 31(3): 239–248. DOI: 10.11858/gywlxb.2017.03.005.

    LI L, ZHANG X F, WU X, et al. Dynamic constitutive and damage parameters of 30CrMnSiNi2A steel with different hardnesses [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 239–248. DOI: 10.11858/gywlxb.2017.03.005.
    [32]
    CHEN G, CHEN X W, CHEN Z F, et al. Simulations of A3 steel blunt projectiles impacting 45 steel plates [J]. Explosion and Shock Waves, 2007, 27(5): 390–397. DOI: 10.11883/1001-1455(2007)05-0390-08.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(5)

    Article Metrics

    Article views (392) PDF downloads(241) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return