Citation: | WANG Yihang, WU Xianqian, HUANG Chenguang. Performance deterioration behavior of photovoltaic cells subjected to massive-particles impact environment[J]. Explosion And Shock Waves, 2024, 44(1): 015901. doi: 10.11883/bzycj-2023-0020 |
[1] |
李靖琳. 硅晶体光伏电池输出特性的建模与仿真研究 [D]. 沈阳: 沈阳农业大学, 2018: 34–45.
LI J L. Modeling and simulation of output characteristics of silicon crystal photovoltaic cells [D]. Shenyang: Shenyang Agricultural University, 2018: 34–45.
|
[2] |
黄仕相. 光面晶体硅表面质量对其光生伏特效应的影响研究 [D]. 福建泉州: 华侨大学, 2021: 2–9.
HUANG S X. Study on the influence of the surface quality of smooth crystalline silicon on its photovoltaic effect [D]. Quanzhou, Fujian: Huaqiao University, 2021: 2–9.
|
[3] |
YUAN Y C, WU C W. Thermal analysis of film photovoltaic cell subjected to dual laser beam irradiation [J]. Applied Thermal Engineering, 2015, 88: 410–417. DOI: 10.1016/j.applthermaleng.2015.01.054.
|
[4] |
张彦, 马梓焱, 袁成清, 等. 环境因素对光伏组件表面的损伤及其防护技术的研究现状 [J]. 腐蚀与防护, 2020, 41(6): 7–13. DOI: 10.11973/fsyfh-202006002.
ZHANG Y, MA Z Y, YUAN C Q, et al. Research progress of environmental factors on surface damage of PV modules and their protection technology [J]. Corrosion & Protection, 2020, 41(6): 7–13. DOI: 10.11973/fsyfh-202006002.
|
[5] |
赵明智, 苗一鸣, 张旭, 等. 沙漠沙尘粒径对太阳电池输出特性影响的实验研究 [J]. 太阳能学报, 2019, 40(5): 1247–1252. DOI: 10.19912/j.0254-0096.2019.05.009.
ZHAO M Z, MIAO Y M, ZHANG X, et al. Experimental study on influence of different dust particle size on output characteristics of solar panel [J]. Acta Energiae Solaris Sinica, 2019, 40(5): 1247–1252. DOI: 10.19912/j.0254-0096.2019.05.009.
|
[6] |
ALNASER N W, AL OTHMAN M J, DAKHEL A A, et al. Comparison between performance of man-made and naturally cleaned PV panels in a middle of a desert [J]. Renewable and Sustainable Energy Reviews, 2018, 82: 1048–1055. DOI: 10.1016/j.rser.2017.09.058.
|
[7] |
FIGGIS B, AHMED E, AHZI S, et al. Review of PV soiling particle mechanics in desert environments [J]. Renewable and Sustainable Energy Reviews, 2017, 76: 872–881. DOI: 10.1016/j.rser.2017.03.100.
|
[8] |
MASSI P A, MELLIT A, DE PIERI D, et al. A comparison between BNN and regression polynomial methods for the evaluation of the effect of soiling in large scale photovoltaic plants [J]. Applied Energy, 2013, 108: 392–401. DOI: 10.1016/j.apenergy.2013.03.023.
|
[9] |
JAVED W, WUBULIKASIMU Y, FIGGIS B, et al. Characterization of dust accumulated on photovoltaic panels in Doha, Qatar [J]. Solar Energy, 2017, 142: 123–135. DOI: 10.1016/j.solener.2016.11.053.
|
[10] |
CHEN J X, PAN G B, OUYANG J, et al. Study on impacts of dust accumulation and rainfall on PV power reduction in East China [J]. Energy, 2020, 194: 116915. DOI: 10.1016/j.energy.2020.116915.
|
[11] |
MEMICHE M, BOUZIAN C, BENZAHIA A, et al. Effects of dust, soiling, aging, and weather conditions on photovoltaic system performances in a Saharan environment—case study in Algeria [J]. Global Energy Interconnection, 2020, 3(1): 60–67. DOI: 10.1016/j.gloei.2020.03.004.
|
[12] |
GHOLAMI A, KHAZAEE I, KHAZAEE S, et al. Experimental investigation of dust deposition effects on photo-voltaic output performance [J]. Solar Energy, 2018, 159: 346–352. DOI: 10.1016/j.solener.2017.11.010.
|
[13] |
HACHICHA A A, AL-SAWAFTA I, SAID Z. Impact of dust on the performance of solar photovoltaic (PV) systems under united Arab emirates weather conditions [J]. Renewable Energy, 2019, 141: 287–297. DOI: 10.1016/j.renene.2019.04.004.
|
[14] |
TIPPABHOTLA S K, RADCHENKO I, SONG W J R, et al. From cells to laminate: probing and modeling residual stress evolution in thin silicon photovoltaic modules using synchrotron X-ray micro-diffraction experiments and finite element simulations [J]. Progress in Photovoltaics: Research and Applications, 2017, 25(9): 791–809. DOI: 10.1002/pip.2891.
|
[15] |
XIAO K L, WU X Q, WU C W, et al. Residual stress analysis of thin film photovoltaic cells subjected to massive micro-particle impact [J]. RSC Advances, 2020, 10(23): 13470–13479. DOI: 10.1039/C9RA10082B.
|
[16] |
XIAO K L, WU X Q, SONG X, et al. Study on performance degradation and damage modes of thin-film photovoltaic cell subjected to particle impact [J]. Scientific Reports, 2021, 11(1): 782. DOI: 10.1038/S41598-020-80879-W.
|
[17] |
HASSANI-GANGARAJ M, VEYSSET D, NELSON K A, et al. Melt-driven erosion in microparticle impact [J]. Nature Communications, 2018, 9(1): 5077. DOI: 10.1038/s41467-018-07509-y.
|
[18] |
WIESE S, KRAEMER F, BETZL N, et al. Interconnection technologies for photovoltaic modules-analysis of technological and mechanical problems [C]//Proceedings of the 2010 11th International Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems. Bordeaux: IEEE, 2010: 1–6. DOI: 10.1109/ESIME.2010.5464518.
|
[19] |
FRAGA M M, DE OLIVEIRA CAMPOS B L, DE ALMEIDA T B, et al. Analysis of the soiling effect on the performance of photovoltaic modules on a soccer stadium in Minas Gerais, Brazil [J]. Solar Energy, 2018, 163: 387–397. DOI: 10.1016/j.solener.2018.02.025.
|
[20] |
DE MOURA M F S F, MARQUES A T. Prediction of low velocity impact damage in carbon–epoxy laminates [J]. Composites Part A: Applied Science and Manufacturing, 2002, 33(3): 361–368. DOI: 10.1016/S1359-835X(01)00119-1.
|
[21] |
LIAO B B, LIU P F. Finite element analysis of dynamic progressive failure properties of GLARE hybrid laminates under low-velocity impact [J]. Journal of Composite Materials, 2018, 52(10): 1317–1330. DOI: 10.1177/0021998317724216.
|
[22] |
WU X Q, YIN Q Y, WEI Y P, et al. Effects of imperfect experimental conditions on stress waves in SHPB experiments [J]. Acta Mechanica Sinica, 2015, 31(6): 827–836. DOI: 10.1007/s10409-015-0439-0.
|
[23] |
WU X Q, WANG X, WEI Y P, et al. An experimental method to measure dynamic stress-strain relationship of materials at high strain rates [J]. International Journal of Impact Engineering, 2014, 69: 149–156. DOI: 10.1016/j.ijimpeng.2014.02.016.
|
[24] |
ZARMAI M T, EKERE N N, ODUOZA C F, et al. Evaluation of thermo-mechanical damage and fatigue life of solar cell solder interconnections [J]. Robotics and Computer-Integrated Manufacturing, 2017, 47: 37–43. DOI: 10.1016/j.rcim.2016.12.008.
|
[25] |
ESFAHANI S N, ASGHARI S, RASHID-NADIMI S. A numerical model for soldering process in silicon solar cells [J]. Solar Energy, 2017, 148: 49–56. DOI: 10.1016/j.solener.2017.03.065.
|
[26] |
KOISSIN V, SKVORTSOV V, SHIPSHA A. Stability of the face layer of sandwich beams with sub-interface damage in the foam core [J]. Composite Structures, 2007, 78(4): 507–518. DOI: 10.1016/j.compstruct.2005.11.012.
|
[27] |
PAPARGYRI L, THERISTIS M, KUBICEK B, et al. Modelling and experimental investigations of microcracks in crystalline silicon photovoltaics: a review [J]. Renewable Energy, 2020, 145: 2387–2408. DOI: 10.1016/j.renene.2019.07.138.
|
[28] |
TORENBEEK E, WITTENBERG H. Flight physics: essentials of aeronautical disciplines and technology, with historical notes [M]. Dordrecht: Springer Science & Business Media, 2009.
|
[29] |
BOEDONI P G. Stress waves in solids [M]. Courier Corporation, 1963.
|
[30] |
WU Z L, WU C W, CHEN G N, et al. On a novel method of impact by a front-end-coated bullet to evaluate the interface adhesion between film and substrate [J]. Progress in Organic Coatings, 2010, 68(1/2): 19–22. DOI: 10.1016/j.porgcoat.2009.07.013.
|
[31] |
TIMOSHENKO S, WOINOWSKY-KRIEGER S. Theory of plates and shells [M]. New York: McGraw-Hill, 1959.
|
[32] |
NYARKO F K A, TAKYI G, EFFAH F B. Impact of the constitutive behaviour of the encapsulant on thermo-mechanical damage in (c-Si) solar PV modules under thermal cycling [J]. Scientific African, 2021, 12: E00767. DOI: 10.1016/j.sciaf.2021.e00767.
|
[33] |
袁锦龙. 多晶硅的破碎机理及破碎装置的设计 [D]. 湖南株洲: 湖南工业大学, 2020: 34–35.
YUAN J L. Crushing mechanism of polysilicon and design of crushing device [D]. Zhuzhou, Hunan: Hunan University of Technology, 2020: 34–35.
|
[34] |
张行. 断裂与损伤力学 [M]. 2版. 北京: 北京航空航天大学出版社, 2009: 45–50.
ZHANG X. Mechanics of fracture and damage [M]. 2nd ed. Beijing: Beihang University Press, 2009: 45–50.
|
[35] |
周越松, 梁森, 王得盼, 等. 阻尼材料/纤维层合板复合靶板抗冲击性能研究 [J]. 兵器装备工程学报, 2022, 43(1): 243–248. DOI: 10.11809/bqzbgcxb2022.01.038.
ZHOU Y S, LIANG S, WANG D P, et al. Impact resistance behavior of damping material/fiber laminate composite target [J]. Journal of Ordnance Equipment Engineering, 2022, 43(1): 243–248. DOI: 10.11809/bqzbgcxb2022.01.038.
|
[36] |
季晨. 基于非局部理论的复合材料层合板损伤演化研究 [D]. 哈尔滨: 哈尔滨工业大学, 2016: 24.
JI C. Research on damage evolution of laminates based on nonlocal theory [D]. Harbin: Harbin Institute of Technology, 2016: 24.
|