Citation: | ZHAO Xiaohua, LIU Shucan, FANG Hongyuan, SUN Jinshan, SHI Mingsheng. Protective effect of polymer layer on reinforced concrete slabs under an underwater contact explosion[J]. Explosion And Shock Waves, 2023, 43(12): 125102. doi: 10.11883/bzycj-2023-0033 |
[1] |
张社荣, 孔源, 王高辉. 水下和空中爆炸时混凝土重力坝动态响应对比分析 [J]. 振动与冲击, 2014, 33(17): 47–54. DOI: 10.13465/j.cnki.jvs.2014.17.009.
ZHANG S R, KONG Y, WANG G H. Dynamic responses of a concrete gravity dam subjected to underwater and air explosions [J]. Journal of Vibration and Shock, 2014, 33(17): 47–54. DOI: 10.13465/j.cnki.jvs.2014.17.009.
|
[2] |
李凌锋, 韦灼彬, 唐廷, 等. 爆炸荷载下沉箱重力式码头模型毁伤效应 [J]. 爆炸与冲击, 2019, 39(1): 012202. DOI: 10.11883/bzycj-2017-0406.
LI L F, WEI Z B, TANG T, et al. Damage effect of caisson gravity wharf model under explosive loading [J]. Explosion and Shock Waves, 2019, 39(1): 012202. DOI: 10.11883/bzycj-2017-0406.
|
[3] |
YANG G D, WANG G H, LU W B, et al. Cross-section shape effects on anti-knock performance of RC columns subjected to air and underwater explosions [J]. Ocean Engineering, 2019, 181(6): 252–266. DOI: 10.1016/j.oceaneng.2019.04.031.
|
[4] |
ZHAO X H, WANG G H, LU W B, et al. Experimental investigation of RC slabs under air and underwater contact explosions [J]. European Journal of Environmental and Civil Engineering, 2021, 25(1): 190–204. DOI: 10.1080/19648189.2018.1528892.
|
[5] |
孔祥清, 赵倩, 曲艳东, 等. 空中和水下爆炸时钢筋混凝土板动态响应对比分析 [J]. 科技导报, 2016, 34(18): 279–286.
KONG X Q, ZHAO Q, QU Y D, et al. Dynamic responses of a concrete slab subjected to air and underwater explosions [J]. Science and Technology Review, 2016, 34(18): 279–286.
|
[6] |
刘超, 孙启鑫, 李会驰. 近爆作用下钢筋混凝土π梁防护性能的数值模拟 [J]. 振动与冲击, 2022, 41(4): 223–231. DOI: 10.13465/j.cnki.jvs.2022.04.029.
LIU C, SUN Q X, LI H C. Numerical simulation for protective of reinforced concrete π beams under close-in explosion [J]. Journal of Vibration and Shock, 2022, 41(4): 223–231. DOI: 10.13465/j.cnki.jvs.2022.04.029.
|
[7] |
石少卿, 张湘冀, 刘颖芳, 等. 硬质聚氨酯泡沫塑料抗爆炸冲击作用的研究 [J]. 振动与冲击, 2005, 24(5): 59–61. DOI: 10.3969/j.issn.1000-3835.2005.05.017.
SHI S Q, ZHANG X J, LIU Y F, et al. The study on explosion shock resistance of rigid polyurethane foam plastics [J]. Journal of Vibration and Shock, 2005, 24(5): 59–61. DOI: 10.3969/j.issn.1000-3835.2005.05.017.
|
[8] |
刘佳, 崔传安, 徐畅. 爆炸波在硬质聚氨酯泡沫中的衰减特性模拟 [J]. 兵器装备工程学报, 2017, 38(9): 164–167. DOI: 10.11809/scbgxb2017.09.035.
LIU J, CUI C A, XU C. Simulation of explosive wave attenuation characteristics in rigid polyurethane foam [J]. Journal of Ordnance Equipment Engineering, 2017, 38(9): 164–167. DOI: 10.11809/scbgxb2017.09.035.
|
[9] |
CODINA R, AMBROSINI D, BORBÓN B F. Alternatives to prevent the failure of RC members under close-in blast loadings [J]. Engineering Failure Analysis, 2016, 60(2): 96–106. DOI: 10.1016/j.engfailanal.2015.11.038.
|
[10] |
KOSTOPOULOS V, KALIMERIS G D, GIANNAROS E. Blast protection of steel reinforced concrete structures using composite foam-core sacrificial cladding [J]. Composites Science and Technology, 2022: 109330. DOI: 10.1016/J.COMPSCITECH.2022.109330.
|
[11] |
夏志成, 张建亮, 王曦浩, 等. 钢板夹芯防爆墙防护效应的影响因素 [J]. 工程爆破, 2016, 22(6): 1–7. DOI: 10.3969/j.issn.1006-7051.2016.06.001.
XIA Z C, ZHANG J L, WANG X H, et al. Influencing factors of protective effect of steel plate sandwich explosion proof wall [J]. Engineering Blasting, 2016, 22(6): 1–7. DOI: 10.3969/j.issn.1006-7051.2016.06.001.
|
[12] |
邹广平, 孙杭其, 唱忠良, 等. 聚氨酯/钢夹芯结构爆炸载荷下动力学响应的数值模拟 [J]. 爆炸与冲击, 2015, 35(6): 907–912. DOI: 10.11883/1001-1455(2015)06-0907-06.
ZOU G P, SUN H Q, CHANG Z L, et al. Numerical simulation on dynamic response of polyurethane/steel sandwich structure under blast loading [J]. Explosion and Shock Waves, 2015, 35(6): 907–912. DOI: 10.11883/1001-1455(2015)06-0907-06.
|
[13] |
李姝妍, 王在成, 毛亮, 等. 活性破片战斗部用缓冲结构应力衰减特性研究 [J]. 兵器材料科学与工程, 2020, 43(5): 43–49. DOI: 10.14024/j.cnki.1004-244x.20200701.001.
LI S Y, WANG Z C, MAO L, et al. Study on stress attenuation characteristics of buffer structure of reactive fragment warhead [J]. Ordnance Material Science and Engineering, 2020, 43(5): 43–49. DOI: 10.14024/j.cnki.1004-244x.20200701.001.
|
[14] |
刘宏杰, 王伟力, 苗润, 等. 基于环形切割串联战斗部隔爆结构的优化设计 [J]. 弹箭与制导学报, 2019, 39(4): 73–76. DOI: 10.15892/j.cnki.djzdxb.2019.04.018.
LIU H J, WANG W L, MIAO R, et al. Optimization design of flameproof structure based on annular cutting tandem warhead [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(4): 73–76. DOI: 10.15892/j.cnki.djzdxb.2019.04.018.
|
[15] |
WANG Z Y, DU M R, FANG H Y, et al. Influence of different corrosion environments on mechanical properties of a roadbed rehabilitation polyurethane grouting material under uniaxial compression [J]. Construction and Building Materials, 2021, 301: 124092. DOI: 10.1016/J.CONBUILDMAT.2021.124092.
|
[16] |
林沛元, 郭潘峰, 郭成超, 等. 钢板、高聚物、土不同材料界面剪切特性试验研究[J]. 岩土工程学报, 2023,45(1): 1–11.
LIN P Y, GUO P F, GUO C C, et al. Experimental study on interfacial shear properties of steel plate, polymer and soil [J]. Chinese Journal of Geotechnical Engineering, 2023,45(1): 1–11.
|
[17] |
孙文彬. 钢筋混凝土板的爆炸荷载试验研究 [J]. 辽宁工程技术大学学报(自然科学版), 2009, 28(2): 217–220. DOI: 10.3969/j.issn.1008-0562.2009.02.016.
SUN W B. Experimental studies on reinforced concrete (RC) slabs subjected to blast loads [J]. Journal of Liaoning Technical University (Natural Science), 2009, 28(2): 217–220. DOI: 10.3969/j.issn.1008-0562.2009.02.016.
|
[18] |
WANG Z Q, LU Y, HAO H, et al. A full coupled numerical analysis approach for buried structures subjected to subsurface blast [J]. Computers & Structures, 2005, 83(4/5): 339–356. DOI: 10.1016/j.compstruc.2004.08.014.
|
[19] |
WANG W, ZhANG D, LU F Y, et al. Experimental study and numerical simulation of the damage mode of a square reinforced concrete slab under close-in explosion [J]. Engineering Failure Analysis, 2013, 27. DOI: 10.1016/j.engfailanal.2012.07.010.
|
[20] |
赵浩楠, 方宏远, 赵小华, 等. 接触爆炸作用下高聚物复合板毁伤特性分析 [J]. 爆炸与冲击, 2023, 43(5): 052201. DOI: 10.11883/bzycj-2022-0161.
HAO H N, FANG H Y, ZHAO X H, et al. Analysis on the blast resistance of polymer composite slabs under contact explosions [J]. Explosion and Shock Waves, 2023, 43(5): 052201. DOI: 10.11883/bzycj-2022-0161.
|
[21] |
LI M J, DU M R, WANG F M, et al. Study on the mechanical properties of polyurethane (PU) grouting material of different geometric sizes under uniaxial compression [J]. Construction and Building Materials, 2020, 259: 119797. DOI: 10.1016/j.conbuildmat.2020.119797.
|
[22] |
石明生. 高聚物注桨材料特性与堤坝定向劈裂注桨机理研究[D]. 大连: 大连理工大学, 2011: 22–61.
|
[23] |
LIU Z D, ZHAO X H, LIU D, et al. Comparative study on blast damage features of reinforced concrete slabs with polyurethane sacrificial cladding based on different numerical simulation methods [J]. Polymers, 2022, 14(18): 3857. DOI: 10.3390/polym14183857.
|
[24] |
杨广栋, 王高辉, 李麒, 等. 爆炸冲击下水底隧道的动态响应及毁伤模式研究 [J]. 振动与冲击, 2022, 41(4): 150–158. DOI: 10.13465/j.cnki.jvs.2022.04.020.
YANG G D, WANG G H, LI Q, et al. Dynamic response and damage patterns of underwater tunnel subjected to blast loads [J]. Journal of Vibration and Shock, 2022, 41(4): 150–158. DOI: 10.13465/j.cnki.jvs.2022.04.020.
|
[25] |
郑欣颖, 李海涛, 张弛, 等. 乳化炸药水下爆炸载荷输出特性实验研究 [J]. 高压物理学报, 2022, 36(4): 045101. DOI: 10.11858/gywlxb.20220502.
ZHENG X Y, LI H T, ZHANG C, et al. Experimental study on load output characteristics of emulsified explosive in underwater explosion [J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 045101. DOI: 10.11858/gywlxb.20220502.
|
[26] |
孙远翔, 田俊宏, 张之凡, 等. 含铝炸药近场水下爆炸冲击波的实验及数值模拟 [J]. 振动与冲击, 2020, 39(14): 171–178, 193. DOI: 10.13465/j.cnki.jvs.2020.14.025.
SUN Y X, TIAN J H, ZHANG Z F, et al. Experiment and numerical simulation study on the near-field underwater explosion of aluminized explosive [J]. Journal of Vibration and Shock, 2020, 39(14): 171–178, 193. DOI: 10.13465/j.cnki.jvs.2020.14.025.
|
[27] |
赵春风, 何凯城, 卢欣, 等. 弧形双钢板混凝土组合板抗爆性能数值研究 [J]. 爆炸与冲击, 2022, 42(2): 025101. DOI: 10.11883/bzycj-2021-0205.
ZHAO C F, HE K C, LU X, et al. Numerical study of blast resistance of curved steel-concrete-steel composite slabs [J]. Explosion and Shock Waves, 2022, 42(2): 025101–. DOI: 10.11883/bzycj-2021-0205.
|
[28] |
ZHAO L, YU H T, YUAN Y, et al. Blast mitigation effect of the foamed cement-base sacrificial cladding for tunnel structures [J]. Construction and Building Materials, 2015, 94(9): 710–718. DOI: 10.1016/j.conbuildmat.2015.07.076.
|
1. | 曹克磊,付乔峰,赵瑜. 不同波纹钢-混凝土板复合结构水下抗爆机理及损伤等级预测. 爆炸与冲击. 2024(06): 75-91 . ![]() | |
2. | 曹克磊,付乔峰,张建伟,黄锦林,赵瑜. 接触爆炸下波纹钢-混凝土板复合结构水下防爆效果评价. 含能材料. 2024(09): 972-985 . ![]() |