Volume 44 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
MA Mengfei, YU Xing, ZHANG Aifeng, ZHANG Jiaqing, ZHU Xianli, WANG Changjian. An experimental study on ignition and explosion of high-pressure hydrogen jet in open space[J]. Explosion And Shock Waves, 2024, 44(6): 062101. doi: 10.11883/bzycj-2023-0037
Citation: MA Mengfei, YU Xing, ZHANG Aifeng, ZHANG Jiaqing, ZHU Xianli, WANG Changjian. An experimental study on ignition and explosion of high-pressure hydrogen jet in open space[J]. Explosion And Shock Waves, 2024, 44(6): 062101. doi: 10.11883/bzycj-2023-0037

An experimental study on ignition and explosion of high-pressure hydrogen jet in open space

doi: 10.11883/bzycj-2023-0037
  • Received Date: 2023-02-10
  • Rev Recd Date: 2024-01-03
  • Available Online: 2024-06-18
  • Publish Date: 2024-06-18
  • Experiments were carried out on the flame behaviors and overpressure evolutions at the initial stage of ignition and explosion of steady-state hydrogen jet in open space, while a high-speed camera and pressure transducers were employed to record the flame shape and overpressure. The results show that at the early stage of ignition and explosion, the flame propagated outward from the ignition electrode with a spherical shape. After 4-6 ms, the flame front reached its maximum displacement, gradually extinguished, and finally formed a jet flame. The displacement of the flame front was mainly affected by the nozzle diameter and increased with the nozzle diameter. The variations of flame width were basically similar to those of the flame front displacement. The entire explosion process only experienced one overpressure peak, with a positive pressure maintained for approximately 1 ms. At the same ignition distance, the peak overpressure increased with hydrogen flow rate. At the same hydrogen flow rate, the peak overpressure decreased with increasing ignition distance. The maximum peak overpressure was directly proportional to the hydrogen flow rate and inversely proportional to the ignition distance.
  • loading
  • [1]
    LI H W, TANG Z S, LI J L, et al. Investigation of vented hydrogen-air deflagrations in a congested vessel [J]. Process Safety and Environmental Protection, 2019, 129: 196–201. DOI: 10.1016/j.psep.2019.07.009.
    [2]
    郝腾腾, 王昌建, 颜王吉, 等. 氢气泄爆作用下结构动力响应特性研究 [J]. 爆炸与冲击, 2020, 40(6): 065401. DOI: 10.11883/bzycj-2019-0412.

    HAO T T, WANG C J, YAN W J, et al. Structural dynamical characteristics induced by vented hydrogen explosion [J]. Explosion and Shock Waves, 2020, 40(6): 065401. DOI: 10.11883/bzycj-2019-0412.
    [3]
    RUI S C, WANG C J, GUO S S, et al. Hydrogen-air explosion with concentration gradients in a cubic enclosure [J]. Process Safety and Environmental Protection, 2021, 151: 141–150. DOI: 10.1016/j.psep.2021.05.003.
    [4]
    WANG L Q, LI T, MA H H. Explosion behaviors of hydrogen-nitrous oxide mixtures at reduced initial pressures [J]. Process Safety and Environmental Protection, 2021, 153: 11–18. DOI: 10.1016/j.psep.2021.07.010.
    [5]
    曹勇, 郭进, 胡坤伦, 等. 点火位置对氢气-空气预混气体泄爆过程的影响 [J]. 爆炸与冲击, 2016, 36(6): 847–852. DOI: 10.11883/1001-1455(2016)06-0847-06.

    CAO Y, GUO J, HU K L, et al. Effect of ignition locations on vented explosion of premixed hydrogen-air mixtures [J]. Explosion and Shock Waves, 2016, 36(6): 847–852. DOI: 10.11883/1001-1455(2016)06-0847-06.
    [6]
    余明高, 阳旭峰, 郑凯, 等. 障碍物对甲烷/氢气爆炸特性的影响 [J]. 爆炸与冲击, 2018, 38(1): 19–27. DOI: 10.11883/bzycj-2017-0172.

    YU M G, YANG X F, ZHENG K, et al. Effect of obstacles on explosion characteristics of methane/hydrogen [J]. Explosion and Shock Waves, 2018, 38(1): 19–27. DOI: 10.11883/bzycj-2017-0172.
    [7]
    陈昊, 郭进, 王金贵, 等. 破膜压力对氢气-甲烷-空气泄爆的影响 [J]. 爆炸与冲击, 2022, 42(11): 115401. DOI: 10.11883/bzycj-2021-0418.

    CHEN H, GUO J, WANG J G, et al. Effects of vent burst pressure on hydrogen-methane-air deflagration in a vented duct [J]. Explosion and Shock Waves, 2022, 42(11): 115401. DOI: 10.11883/bzycj-2021-0418.
    [8]
    SWAIN M R, FILOSO P A, SWAIN M N. An experimental investigation into the ignition of leaking hydrogen [J]. International Journal of Hydrogen Energy, 2007, 32(2): 287–295. DOI: 10.1016/j.ijhydene.2006.06.041.
    [9]
    PANDA P P, HECHT E S. Ignition and flame characteristics of cryogenic hydrogen releases [J]. International Journal of Hydrogen Energy, 2017, 42(1): 775–785. DOI: 10.1016/j.ijhydene.2016.08.051.
    [10]
    FRIEDRICH A, BREITUNG W, STERN G, et al. Ignition and heat radiation of cryogenic hydrogen jets [J]. International Journal of Hydrogen Energy, 2012, 37(22): 17589–17598. DOI: 10.1016/j.ijhydene.2012.07.070.
    [11]
    KOBAYASHI H, MUTO D, DAIMON Y, et al. Experimental study on cryo-compressed hydrogen ignition and flame [J]. International Journal of Hydrogen Energy, 2020, 45(7): 5098–5109. DOI: 10.1016/j.ijhydene.2019.12.091.
    [12]
    MOGI T, HORIGUCHI S. Experimental study on the hazards of high-pressure hydrogen jet diffusion flames [J]. Journal of Loss Prevention in the Process Industries, 2009, 22(1): 45–51. DOI: 10.1016/j.jlp.2008.08.006.
    [13]
    GUO J, WANG C J, LI M H, et al. Experimental study on spark ignition of non-premixed hydrogen jets [J]. Journal of Thermal Science, 2014, 23(4): 354–358. DOI: 10.1007/s11630-014-0717-3.
    [14]
    闫伟阳, 潘旭海, 汪志雷, 等. 高压氢气泄漏自燃形成喷射火的实验研究 [J]. 爆炸与冲击, 2019, 39(11): 115402. DOI: 10.11883/bzycj-2018-0394.

    YAN W Y, PAN X H, WANG Z L, et al. Experimental investigation on spontaneous combustion of high-pressure hydrogen leakage to form jet fire [J]. Explosion and Shock Waves, 2019, 39(11): 115401. DOI: 10.11883/bzycj-2018-0394.
    [15]
    AHMED S F, MASTORAKOS E. Spark ignition of lifted turbulent jet flames [J]. Combustion and Flame, 2006, 146(1/2): 215–231. DOI: 10.1016/j.combustflame.2006.03.007.
    [16]
    AHMED S F, BALACHANDRAN R, MASTORAKOS E. Measurements of ignition probability in turbulent non-premixed counterflow flames [J]. Proceedings of the Combustion Institute, 2007, 31(1): 1507–1513. DOI: 10.1016/j.proci.2006.07.089.
    [17]
    GRUNE J, SEMPERT K, KUZNETSOV M, et al. Experimental study of ignited unsteady hydrogen jets into air [J]. International Journal of Hydrogen Energy, 2011, 36(3): 2497–2504. DOI: 10.1016/j.ijhydene.2010.04.152.
    [18]
    ROYLE M, WILLOUGHBY D B. Consequences of catastrophic releases of ignited and unignited hydrogen jet releases [J]. International Journal of Hydrogen Energy, 2011, 36(3): 2688–2692. DOI: 10.1016/j.ijhydene.2010.03.141.
    [19]
    GRUNE J, SEMPERT K, KUZNETSOV M, et al. Experimental study of ignited unsteady hydrogen releases from a high pressure reservoir [J]. International Journal of Hydrogen Energy, 2014, 39(11): 6176–6183. DOI: 10.1016/j.ijhydene.2013.08.076.
    [20]
    BIRCH A D, BROWN D R, DODSON M G, et al. The structure and concentration decay of high pressure jets of natural gas [J]. Combustion Science and Technology, 1984, 36(5/6): 249–261. DOI: 10.1080/00102208408923739.
    [21]
    BIRCH A D, HUGHES D J, SWAFFIELD F. Velocity decay of high pressure jets [J]. Combustion Science and Technology, 1987, 52(1): 161–171. DOI: 10.1080/00102208708952575.
    [22]
    SCHEFER R W, HOUF W G, WILLIAMS T C, et al. Characterization of high-pressure, underexpanded hydrogen-jet flames [J]. International Journal of Hydrogen Energy, 2007, 32(12): 2081–2093. DOI: 10.1016/j.ijhydene.2006.08.037.
    [23]
    DUAN Q L, XIAO H H, GAO W, et al. Experimental study on spontaneous ignition and flame propagation of high-pressure hydrogen release via a tube into air [J]. Fuel, 2016, 181: 811–819. DOI: 10.1016/j.fuel.2016.05.066.
    [24]
    TAKENO K, OKABAYASHI K, KOUCHI A, et al. Dispersion and explosion field tests for 40 MPa pressurized hydrogen [J]. International Journal of Hydrogen Energy, 2007, 32(13): 2144–2153. DOI: 10.1016/j.ijhydene.2007.04.018.
    [25]
    KIKUKAWA S, YAMAGA F, MITSUHASHI H. Risk assessment of Hydrogen fueling stations for 70 MPa FCVs [J]. International Journal of Hydrogen Energy, 2008, 33(23): 7129–7136. DOI: 10.1016/j.ijhydene.2008.08.063.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (88) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return