Volume 43 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
JIANG Shan, LU Guoyun, YANG Huiwei. Dynamic response and parameter analysis of concrete-filled steel tubular structure under lateral impact loading[J]. Explosion And Shock Waves, 2023, 43(11): 112203. doi: 10.11883/bzycj-2023-0039
Citation: JIANG Shan, LU Guoyun, YANG Huiwei. Dynamic response and parameter analysis of concrete-filled steel tubular structure under lateral impact loading[J]. Explosion And Shock Waves, 2023, 43(11): 112203. doi: 10.11883/bzycj-2023-0039

Dynamic response and parameter analysis of concrete-filled steel tubular structure under lateral impact loading

doi: 10.11883/bzycj-2023-0039
  • Received Date: 2023-02-13
  • Accepted Date: 2023-07-11
  • Rev Recd Date: 2023-06-30
  • Available Online: 2023-07-20
  • Publish Date: 2023-11-17
  • By employing the mode approximation method for rigid-plastic structural dynamic behavior and numerical simulation, a dynamic response analysis was conducted on circular-section concrete-filled steel tubular (CFST) structures subjected to lateral impact loadings. The mechanical model of the CFST structure was equivalently represented as a rigid-plastic foundation beam model according to its plastic behavior. Under the linear velocity field assumption and the geometric similarity, the equivalently initial velocity for mode approximation of the structure was derived and compared with the existing experimental data. An analytical solution for the plastic lateral deformation at the mid-span of the CFST with two fixed ends by the rigid-plastic mode approximation method was provided, yielding non-dimensional geometric and physical parameters that influenced the ultimate lateral plastic deformation. A numerical model of the CFST structure under lateral impact was established using ABAQUS/Explicit. The theoretical and numerical predictions were both compared with existing experimental global deformations. Dimensional analysis and numerical modeling were combined to analyze the geometric and physical parameters, as well as the initial impact impulse, which influence the plastic deformation of the CFST structure. The results demonstrate a good agreement between the theoretical, numerical results, and experimental data, confirming that the plastic deformations of the structure align with the assumed distribution of plastic hinges. For geometric variables, the ratio of length to diameter and ratio of thickness to diameter exert a significant influence on the final lateral deformation. The relative width of the indenter can alter the deformation shape of the structure. The physical parameters of the steel tube and core concrete have less impact on the deflection at the mid-span compared with the geometric variables. The final lateral deformation of the CFST structure exhibits a quadratic correlation with the initial impact impulse. Finally, the applicable range of all the theoretical analysis variables is given according to the corresponding parameter analysis. The proposed mode solutions for rigid-plastic response provide a reliable prediction of the plastic deformation behavior of the CFST structures under lateral impact loadings.
  • loading
  • [1]
    HAH L H, LI W, BJORHOVDE R. Developments and advanced applications of concrete-filled steel tubular (CFST) structures: members [J]. Journal of Constructional Steel Research, 2014, 100: 211–228. DOI: 10.1016/j.jcsr.2014.04.016.
    [2]
    余同希, 朱凌, 许骏. 结构冲击动力学进展 (2010−2020) [J]. 爆炸与冲击, 2021, 41(12): 121401. DOI: 10.11883/bzycj-2021-0113.

    YU T X, ZHU L, XU J. Progress in structural impact dynamics during 2010−2020 [J]. Explosion and Shock Waves, 2021, 41(12): 121401. DOI: 10.11883/bzycj-2021-0113.
    [3]
    FAN W, XU X, ZHANG Z, et al. Performance and sensitivity analysis of UHPFRC-strengthened bridge columns subjected to vehicle collisions [J]. Engineering Structures, 2018, 173: 251–268. DOI: 10.1016/j.engstruct.2018.06.113.
    [4]
    XU M, GAO S, GUO L H, et al. Study on collapse mechanism of steel frame with CFST-columns under column-removal scenario [J]. Journal of Constructional Steel Research, 2018, 141: 275–286. DOI: 10.1016/j.jcsr.2017.11.020.
    [5]
    王蕊. 钢管混凝土结构构件在侧向撞击下的动力响应及其损伤破坏的研究 [D]. 太原: 太原理工大学, 2008: 19–49.

    WANG R. Study on the dynamic response and damage failure of concrete filled steel tube under lateral impact [D]. Taiyuan, Shanxi, China: Taiyuan University of Technology, 2008: 19–49.
    [6]
    WANG R, HAN L H, HOU C C. Behavior of concrete filled steel tubular (CFST) members under lateral impact: experiment and FEA model [J]. Journal of Constructional Steel Research, 2013, 80: 188–201. DOI: 10.1016/j.jcsr.2012.09.003.
    [7]
    HAN L H, HOU C C, ZHAO X L, et al. Behaviour of high-strength concrete filled steel tubes under transverse impact loading [J]. Journal of Constructional Steel Research, 2014, 92: 25–39. DOI: 10.1016/j.jcsr.2013.09.003.
    [8]
    王潇宇, DEMARTINO C, 徐金俊, 等. 侧向冲击作用下钢管混凝土柱动力响应试验研究及计算方法 [J]. 土木工程学报, 2017, 50(12): 28–36. DOI: 10.15951/j.tmgcxb.2017.12.004.

    WANG X Y, DEMARTINO C, XU J J, et al. Dynamic response of concrete filled steel tube column under lateral impact load: experimental study and calculation method [J]. China Civil Engineering Journal, 2017, 50(12): 28–36. DOI: 10.15951/j.tmgcxb.2017.12.004.
    [9]
    ZHU A Z, XU W, GAO K, et al. Lateral impact response of rectangular hollow and partially concrete-filled steel tubular columns [J]. Thin-Walled Structures, 2018, 130: 114–131. DOI: 10.1016/j.tws.2018.05.009.
    [10]
    王文达, 陈振福, 纪孙航. 长期持荷工况下钢管混凝土构件的抗撞击性能 [J]. 爆炸与冲击, 2021, 41(8): 083106. DOI: 10.11883/bzycj-2020-0204.

    WANG W D, CHEN Z F, JI S H, Impact resistance of concrete-filled steel tubular members under long-term loading [J]. Explosion and Shock Waves, 2021, 41(8): 083106. DOI: 10.11883/bzycj-2020-0204.
    [11]
    王路明, 刘艳辉, 赵世春, 等. 侧向低速冲击作用下钢管混凝土构件开裂评估模型及影响因素研究 [J]. 土木工程学报, 2022, 55(3): 7–17, 35. DOI: 10.15951/j.tmgcxb.2022.03.001.

    WANG L M, LIU Y H, ZHAO S C, et al. Study on evaluation and influencing factors for cracking of concrete-filled steel tubular members subjected to lateral low-velocity impact [J]. China Civil Engineering Journal, 2022, 55(3): 7–17, 35. DOI: 10.15951/j.tmgcxb.2022.03.001.
    [12]
    瞿海雁, 李国强, 孙建运, 等. 侧向冲击作用下钢管混凝土构件的简化分析模型 [J]. 同济大学学报 (自然科学版), 2011, 39(1): 35–41. DOI: 0253-374X(2011)01-0035-07.

    QU H Y, LI G Q, SUN J Y, et al. Simplified analysis model of circular concrete filled steel tube specimen under lateral impact [J]. Journal of Tongji University (Natural science), 2011, 39(1): 35–41. DOI: 0253-374X(2011)01-0035-07.
    [13]
    BAMBACH M R, JAMA H, ZHAO X L, et al. Hollow and concrete filled steel hollow sections under transverse impact loads [J]. Engineering Structures, 2008, 30(10): 2859–2870. DOI: 10.1016/j.engstruct.2008.04.003.
    [14]
    WANG Y, QIAN X, LIEW J Y R, et al. Impact of cement composite filled steel tubes: an experimental, numerical and theoretical treatise [J]. Thin-Walled Structures, 2015, 87: 76–88. DOI: 10.1016/j.tws.2014.11.007.
    [15]
    余同希, 华云龙. 结构塑性动力学引论 [M]. 合肥: 中国科技大学出版社, 1994: 88−89.
    [16]
    MARTIN J B, SYMONDS P S. Mode approximations for impulsively loaded rigid plastic structures [J]. Journal of the Engineering Mechanics Division, 1965, 92(5): 61. DOI: 10.1061/JMCEA3.0001036.
    [17]
    YU T X, STRONGE W J. Large deflections of a rigid-plastic beam-on-foundation from impact [J]. International Journal of Impact Engineering, 1990, 9(1): 115–126. DOI: 10.1016/0734-743x(90)90025-q.
    [18]
    于博丽, 冯根柱, 李世强, 等. 横向爆炸载荷下薄壁圆管的动态响应 [J]. 爆炸与冲击, 2019, 39(10): 103101. DOI: 10.11883/bzycj-2018-0295.

    YU B L, FENG G Z, LI S Q, et al. Dynamic response of thin-wall circular tubes under transverse blast loading [J]. Explosion and Shock Waves, 2019, 39(10): 103101. DOI: 10.11883/bzycj-2018-0295.
    [19]
    WALTERS R M, JONES N. An approximate theoretical study of the dynamic plastic behavior of shells [J]. International Journal of Non-Linear Mechanics, 1972, 7(3): 255–273. DOI: 10.1016/0020-7462(72)90049-2.
    [20]
    张煜航, 陈青青, 张杰, 等. 混凝土三维细观模型的建模方法与力学特性分析 [J]. 爆炸与冲击, 2019, 39(5): 054205. DOI: 10.11883/bzycj-2018-0408.

    ZHANG Y H, CHEN Q Q, ZHANG J, et al. 3D mesoscale modeling method and dynamic mechanical [J]. Explosion and Shock Waves, 2019, 39(5): 054205. DOI: 10.11883/bzycj-2018-0408.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (295) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return