Citation: | YANG Yaotang, WANG Rui, ZHAO Hui, HOU Chuanchuan. Impact resistence mechanism and deflection prediction of steel-concrete composite wall under fire exposure[J]. Explosion And Shock Waves, 2024, 44(1): 012101. doi: 10.11883/bzycj-2023-0052 |
[1] |
李小军, 李晓虎. 核电工程双钢板混凝土组合剪力墙面内受弯性能研究 [J]. 工程力学, 2017, 34(9): 43–53. DOI: 10.6052/j.issn.1000-4750.2016.08.0665.
LI X J, LI X H. Study on in-plane flexural behavior of double steel plates and concrete infill composite shear walls for nuclear engineering [J]. Engineering Mechanics, 2017, 34(9): 43–53. DOI: 10.6052/j.issn.1000-4750.2016.08.0665.
|
[2] |
赵唯以, 王琳, 郭全全, 等. 双钢板混凝土组合结构抗冲击性能的研究进展 [J]. 钢结构(中英文), 2020, 35(3): 26–36. DOI: 10.13206/j.gjgS19121501.
ZHAO W Y, WANG L, GUO Q Q, et al. Research advances of impact resistance of steel-concrete composite structures [J]. Steel Construction (Chinese & English), 2020, 35(3): 26–36. DOI: 10.13206/j.gjgS19121501.
|
[3] |
赵唯以, 郭全全. 低速冲击下双钢板混凝土组合墙的力学性能研究 [J]. 土木工程学报, 2018, 51(11): 88–94. DOI: 10.15951/j.tmgcxb.2018.11.007.
ZHAO W Y, GUO Q Q. Study on behavior of double-skin steel-concrete composite walls subjected to low-velocity impact [J]. China Civil Engineering Journal, 2018, 51(11): 88–94. DOI: 10.15951/j.tmgcxb.2018.11.007.
|
[4] |
严加宝, 刘青峰, 张令心, 等. 设槽钢连接件的钢-混凝土-钢组合剪力墙抗冲击性能研究 [J]. 建筑结构学报, 2020, 41(S2): 270–279. DOI: 10.14006/j.jzjgxb.2020.S2.0030.
YAN J B, LIU Q F, ZHANG L X, et al. Study on impact behavior of steel-concrete-steel sandwich shear wall with channel connectors [J]. Journal of Building Structures, 2020, 41(S2): 270–279. DOI: 10.14006/j.jzjgxb.2020.S2.0030.
|
[5] |
朱立猛, 高晓飞, 张春巍. 无焊缝全螺栓连接双钢板混凝土组合剪力墙平面外抗冲击性能有限元分析 [J]. 振动与冲击, 2021, 40(9): 166–174. DOI: 10.13465/j.cnki.jvs.2021.09.022.
ZHU L M, GAO X F, ZHANG C W. Finite element analysis for out of plane anti-impact performance of unwelded steel plate-concrete-steel plate composite shear wall with all bolted joints [J]. Journal of Vibration and Shock, 2021, 40(9): 166–174. DOI: 10.13465/j.cnki.jvs.2021.09.022.
|
[6] |
WEI F, FANG C, WU B. Fire resistance of concrete-filled steel plate composite (CFSPC) walls [J]. Fire Safety Journal, 2017, 88: 26–39. DOI: 10.1016/j.firesaf.2016.12.008.
|
[7] |
钱凯, 谭鑫宇, 李治, 等. 高温下钢筋混凝土板抗冲击性能及其影响因素 [J]. 工程力学, 2023, 40(1): 132–143, 154. DOI: 10.6052/j.issn.1000-4750.2021.08.0594.
QIAN K, TAN X Y, LI Z, et al. Impact performance and the influence factors of reinforced concrete slabs under high temperatures [J]. Engineering Mechanics, 2023, 40(1): 132–143, 154. DOI: 10.6052/j.issn.1000-4750.2021.08.0594.
|
[8] |
JIN L, BAI J J, ZHANG R B, et al. Effect of elevated temperature on the low-velocity impact performances of reinforced concrete slabs [J]. International Journal of Impact Engineering, 2021, 149: 103797. DOI: 10.1016/j.ijimpeng.2020.103797.
|
[9] |
LIE T T, KODUR V K R. Fire resistance of steel columns filled with bar-reinforced concrete [J]. Journal of Structural Engineering, 1996, 122(1): 30–36. DOI: 10.1061/(ASCE)0733-9445(1996)122:1(30).
|
[10] |
NARAYANAN R S. EN 1993-1-2: 2005 design of steel structures-part 1-2: general rules-structural fire design [S]. Britain: British Standard Institution, 2005.
|
[11] |
CHEN L, FANG Q, JIANG X Q, et al. Combined effects of high temperature and high strain rate on normal weight concrete [J]. International Journal of Impact Engineering, 2015, 86: 40–56. DOI: 10.1016/j.ijimpeng.2015.07.002.
|
[12] |
AL-THAIRY H, WANG Y C. A numerical study of the behaviour and failure modes of axially compressed steel columns subjected to transverse impact [J]. International Journal of Impact Engineering, 2011, 38(8/9): 732–744. DOI: 10.1016/j.ijimpeng.2011.03.005.
|
[13] |
李国强, 陈凯, 蒋首超, 等. 高温下Q345钢的材料性能试验研究 [J]. 建筑结构, 2001, 31(1): 53–55. DOI: 10.19701/j.jzjg.2001.01.019.
LI G Q, CHEN K, JIANG S C, et al. Experimental studies on the high-temperature material properties of Q345 steel [J]. Building Structure, 2001, 31(1): 53–55. DOI: 10.19701/j.jzjg.2001.01.019.
|
[14] |
CHEN H, LIEW J Y. Explosion and fire analysis of steel frames using mixed element approach [J]. Journal of Engineering Mechanics, 2005, 131(6): 606–616. DOI: 10.1061/(ASCE)0733-9399(2005)131:6(606).
|
[15] |
李国强. 钢结构及钢-混凝土组合结构抗火设计 [M]. 北京: 中国建筑工业出版社, 2006.
LI G Q. Fire resistance design of steel structure and steel-concrete composite structure [M]. Beijing: China Architecture & Building Press, 2006.
|
[16] |
王泽芳. 双钢板-超高性能混凝土组合板冲切性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
WANG Z F. Punching shear performance of steel-ultra-high performance concrete-steel sandwich slabs [D]. Harbin: Harbin Institute of Technology, 2019.
|
[17] |
韦芳芳, 杜金娥, 胡雪峰, 等. 单面受火双钢板-混凝土组合剪力墙的耐火性能试验研究 [J]. 东南大学学报(自然科学版), 2016, 46(3): 518–522. DOI: 10.3969/j.issn.1001-0505.2016.03.011.
WEI F F, DU J E, HU X F, et al. Experimental research on fire performance of concrete filled double-steel-plate composite wall exposed to one-side fire [J]. Journal of Southeast University (Natural Science Edition), 2016, 46(3): 518–522. DOI: 10.3969/j.issn.1001-0505.2016.03.011.
|
[18] |
霍静思, 任晓虎, 肖岩. 标准火灾作用下钢管混凝土短柱落锤动态冲击试验研究 [J]. 土木工程学报, 2012, 45(4): 9–20. DOI: 10.15951/j.tmgcxb.2012.04.009.
HUO J S, REN X H, XIAO Y. Impact behavior of concrete-filled steel tubular stub columns under ISO-834 standard fire [J]. China Civil Engineering Journal, 2012, 45(4): 9–20. DOI: 10.15951/j.tmgcxb.2012.04.009.
|
[19] |
瞿海雁, 李国强, 孙建运, 等. 侧向冲击作用下钢管混凝土构件的简化分析模型 [J]. 同济大学学报(自然科学版), 2011, 39(1): 35–41. DOI: 10.3969/j.issn.0253-374x.2011.01.007.
QU H Y, LI G Q, SUN J Y, et al. Simplified analysis model of circular concrete-filled steel tube specimen under lateral impact [J]. Journal of Tongji University (Natural Science), 2011, 39(1): 35–41. DOI: 10.3969/j.issn.0253-374x.2011.01.007.
|
[20] |
JI S H, WANG W D, XIAN W. Lateral impact behaviour of square CFST columns under fire condition [J]. Journal of Constructional Steel Research, 2022, 196: 107367. DOI: 10.1016/j.jcsr.2022.107367.
|
[21] |
赵唯以, 高泽鹏, 王琳, 等. 集中荷载作用下四边简支双钢板混凝土组合板的力学性能研究 [J]. 工程力学, 2022, 39(3): 158–170, 192. DOI: 10.6052/j.issn.1000-4750.2021.01.0077.
ZHAO W Y, GAO Z P, WANG L, et al. Mechanical performance of two-way simply supported steel-plate composite slabs under concentrated load [J]. Engineering Mechanics, 2022, 39(3): 158–170, 192. DOI: 10.6052/j.issn.1000-4750.2021.01.0077.
|