Volume 43 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
HE Liling, GUO Hu, CHEN Xiaowei, YAN Yixia, LI Jicheng, CHEN Gang. Influence of structural deformation on the deflection of penetrator into concrete target with deep penetration[J]. Explosion And Shock Waves, 2023, 43(9): 091404. doi: 10.11883/bzycj-2023-0068
Citation: HE Liling, GUO Hu, CHEN Xiaowei, YAN Yixia, LI Jicheng, CHEN Gang. Influence of structural deformation on the deflection of penetrator into concrete target with deep penetration[J]. Explosion And Shock Waves, 2023, 43(9): 091404. doi: 10.11883/bzycj-2023-0068

Influence of structural deformation on the deflection of penetrator into concrete target with deep penetration

doi: 10.11883/bzycj-2023-0068
  • Received Date: 2023-02-28
  • Accepted Date: 2023-07-04
  • Rev Recd Date: 2023-06-24
  • Available Online: 2023-07-13
  • Publish Date: 2023-09-11
  • Earth penetration weapon (EPW) is commonly used to attack the underground target. However, the ballistic trajectory deflection, which is essentially caused by the deflection of the penetrator, commonly decreases the penetration efficiency of the penetrator. Thus, both the deflection angle and depth of penetration (DOP) of the projectile demand rapid and precise predictions. Based on the differential-areal-force-law (DAFL) approach, an analytical contact-resistant pressure is applied on the projectile surface in simulation. It represents the resistant force of the target and considers the free-surface effects of all surfaces of a finite concrete target. The simulation model is verified by comparing with the test results of the DOP and rotation angle of projectiles in open references. The influence of structural deformation upon the deflection of the penetrator is investigated by comparing the dynamics and movement of rigid and deformable projectiles. It indicates that the structural deformation drives the deformable projectile to deflect, which changes the total moment and instant angular velocity of the projectile. Under the same impact conditions, the rotation angle of the deformable projectile is usually larger than that of the rigid projectile. With the aspect ratio of projectile and impact velocity of the projectile decreasing, and the oblique angle of the projectile increasing, the rotation angle of the rigid projectile increases. However, for the deformable projectile, with the aspect ratio and oblique angle of the projectile increasing and the thickness of the projectile decreasing, the rotation angle of projectile increases. The rotation angle of deformable projectile does not monotonously increase with the impact velocity of the projectile increasing. It should be analyzed according to its actual structural deformation. When the impact velocity is less than or equal to 800 m/s and the oblique angle of the projectile is larger than or equal to 20°, the higher the impact velocity, the larger the oblique angle and the aspect ratio, the thinner the thickness of the projectile, the structural deformation contributes larger deflection of the projectile. In this way, to promote the accuracy and reasonability of simulation, it is suggested that the projectile should be deformable when the deformation and dynamics of the projectile are demanded for non-ideal penetration of a penetrator.
  • loading
  • [1]
    CHEN W X, GUO Z K, QIAN Q H, et al. Penetration depth for yaw-inducing bursting layer impacted by projectile [J]. Journal of Central South University of Technology, 2012, 19(4): 1002–1009. DOI: 10.1007/s11771-012-1103-5.
    [2]
    任辉启, 穆超民, 刘瑞朝, 等. 精确制导武器侵彻效应与工程防护 [M]. 北京: 科学出版社, 2016.
    [3]
    GOLDSMITH W. Non-ideal projectile impact on targets [J]. International Journal of Impact Engineering, 1999, 22(2/3): 95–395. DOI: 10.1016/S0734-743X(98)00031-1.
    [4]
    何丽灵, 陈小伟, 夏源明. 侵彻混凝土弹体磨蚀的若干研究进展 [J]. 兵工学报, 2010, 31(7): 950–966. DOI: 10.3969/j.issn.1000-1093.2010.07.013.

    HE L L, CHEN X W, XIA Y M. A review on the mass loss of projectile [J]. Acta Armamentarii, 2010, 31(7): 950–966. DOI: 10.3969/j.issn.1000-1093.2010.07.013.
    [5]
    FORRESTAL M J, FREW D, HANCHAK S. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F.
    [6]
    FREW D, HANCHAK S, GREEN M. Penetration of concrete targets with ogive-nose steel rods [J]. International Journal of Impact Engineering, 1998, 21(6): 489–497. DOI: 10.1016/S0734-743X(98)00008-6.
    [7]
    FREW D, FORRESTAL M, HANCHAK S. Penetration experiments with limestone targets and ogive-nose steel projectiles [J]. Journal of Applied Mechanics, 2000, 67(4): 841–845. DOI: 10.1115/1.1331283.
    [8]
    JEROME D, TYNON R, WILSON L. Experimental observations of the stability and survivability of ogive-nosed, high-strength steel alloy projectiles in cementious materials at striking velocities from 800–1 800 m/s [C] // Proceedings of the 3rd Joint Classified Ballistics Symposium. San Diego, USA, 2000.
    [9]
    初哲, 周刚, 杨黔龙, 等. 一种强力钻地弹侵彻混凝土靶研究 [J]. 爆炸与冲击, 2004, 24(2): 115–121.

    CHU Z, ZHOU G, YANG Q, et al. Study of the robust earth penetrator penetrating concrete target [J]. Explosion and Shock Waves, 2004, 24(2): 115–121.
    [10]
    陈小伟, 张方举, 杨世全, 等. 动能深侵彻弹的力学设计(Ⅲ): 缩比实验分析 [J]. 爆炸与冲击, 2006, 26(2): 105–114. DOI: 10.11883/1001-1455(2006)02-0105-10.

    CHEN X W, ZHANG F J, YANG S Q, et al. Mechanics of structural design of EPW (Ⅲ): investigation on the reduced-scale tests [J]. Explosion and Shock Waves, 2006, 26(2): 105–114. DOI: 10.11883/1001-1455(2006)02-0105-10.
    [11]
    何翔, 徐翔云, 孙桂娟, 等. 弹体高速侵彻混凝土效应的实验研究 [J]. 爆炸与冲击, 2010, 30(1): 1–6. DOI: 10.11883/1001-1455(2010)01-0001-06.

    HE X, XU X Y, SUN G J, et al. Experimental investigation on projectiles’ high-velocity penetration into concrete targets [J]. Explosion and Shock Waves, 2010, 30(1): 1–6. DOI: 10.11883/1001-1455(2010)01-0001-06.
    [12]
    MU Z C, ZHANG W. An investigation on mass loss of ogival projectiles penetrating concrete targets [J]. International Journal of Impact Engineering, 2011, 38(8/9): 770–778. DOI: 10.1016/j.ijimpeng.2011.04.002.
    [13]
    何丽灵, 陈小伟, 范瑛. 先进钻地弹高速侵彻实验中质量磨蚀金相分析 [J]. 爆炸与冲击, 2012, 32(5): 515–522. DOI: 10.11883/1001-1455(2012)05-0515-08.

    HE L L, CHEN X W, FAN Y. Metallographic observation of reduced-scale advanced EPW after high-speed penetration [J]. Explosion and Shock Waves, 2012, 32(5): 515–522. DOI: 10.11883/1001-1455(2012)05-0515-08.
    [14]
    武海军, 黄风雷, 王一楠, 等. 高速侵彻混凝土弹体头部侵蚀终点效应实验研究 [J]. 兵工学报, 2012, 33(1): 48–55. DOI: 10.3969/j.issn.1000-1093.2012.01.009.

    WU H J, HUANG F L, WANG Y N, et al. Experimental investigation on projectile nose eroding effect of high-velocity penetration into concrete [J]. Acta Armamentarii, 2012, 33(1): 48–55. DOI: 10.3969/j.issn.1000-1093.2012.01.009.
    [15]
    薛剑锋, 沈培辉, 王晓鸣. 高速弹体斜侵彻混凝土靶的效率分析 [J]. 兵器材料科学与工程, 2016, 39(2): 38–41. DOI: 10.14024/j.cnki.1004-244x.20160302.014.

    XUE J F, SHEN P H, WANG X M. Efficiency analysis of high-speed projectile obliquely penetrating concrete targets [J]. Ordnance Material Science and Engineering, 2016, 39(2): 38–41. DOI: 10.14024/j.cnki.1004-244x.20160302.014.
    [16]
    CHEN X W. Dynamics of metallic and reinforced concrete targets subjected to projectile impact [D]. Singapore: Nanyang Technological University, 2003.
    [17]
    SIMONOV I, OSIPENKO K. Stability, paths, and dynamic bending of a blunt body of revolution penetrating into an elastoplastic medium [J]. Journal of Applied Mechanics and Technical Physics, 2004, 45(3): 428–439. DOI: 10.1023/B:JAMT.0000025026.52832.ea.
    [18]
    LI Q M, FLORES-JOHNSON E A. Hard projectile penetration and trajectory stability [J]. International Journal of Impact Engineering, 2011, 38(10): 815–823. DOI: 10.1016/j.ijimpeng.2011.05.005.
    [19]
    PARK S, XIA Q, ZHOU M. Dynamic behavior of concrete at high strain rates and pressures:Ⅱ. numerical simulation [J]. International Journal of Impact Engineering, 2001, 25(9): 887–910. DOI: 10.1016/S0734-743X(01)00021-5.
    [20]
    MAN H, VAN MIER J G M. Influence of particle density on 3D size effects in the fracture of (numerical) concrete [J]. Mechanics of Materials, 2008, 40(6): 470–486. DOI: 10.1016/j.mechmat.2007.11.003.
    [21]
    MAN H, VAN MIER J G M. Damage distribution and size effect in numerical concrete from lattice analyses [J]. Cement & Concrete Composites, 2011, 33(9): 867–880. DOI: 10.1016/j.cemconcomp.2011.01.008.
    [22]
    马爱娥, 黄风雷, 初哲, 等. 弹体攻角侵彻混凝土数值模拟 [J]. 爆炸与冲击, 2008, 28(1): 33–37. DOI: 10.11883/1001-1455(2008)01-0033-05.

    MA A E, HUANG F L, CHU Z, et al. Numerical simulation on yawed penetration into concrete [J]. Explosion and Shock Waves, 2008, 28(1): 33–37. DOI: 10.11883/1001-1455(2008)01-0033-05.
    [23]
    SILLING S, FORRESTAL M. Mass loss from abrasion on ogive-nose steel projectiles that penetrate concrete targets [J]. International Journal of Impact Engineering, 2007, 34(11): 1814–1820. DOI: 10.1016/j.ijimpeng.2006.10.008.
    [24]
    LIU Y, MA A E, HUANG F L. Numerical simulations of oblique-angle penetration by deformable projectiles into concrete targets [J]. International Journal of Impact Engineering, 2009, 36(3): 438–446. DOI: 10.1016/j.ijimpeng.2008.03.006.
    [25]
    LIU Y, HUANG F L, MA A E. Numerical simulations of oblique penetration into reinforced concrete targets [J]. Computers and Mathematics with Applications, 2011, 61(8): 2168–2171. DOI: 10.1016/j.camwa.2010.09.006.
    [26]
    BLESS S, SATAPATHY S, NORMANDIA M. Transverse loads on a yawed projectile [J]. International Journal of Impact Engineering, 1999, 23(1): 77–86. DOI: 10.1016/S0734-743X(99)00064-0.
    [27]
    WARREN T L. Simulations of the penetration of limestone targets by ogive-nose 4340 steel projectiles [J]. International Journal of Impact Engineering, 2002, 27(5): 475–496. DOI: 10.1016/S0734-743X(01)00154-3.
    [28]
    WARREN T L, POORMON K L. Penetration of 6061-T6511 aluminum targets by ogive-nosed VAR 4340 steel projectiles at oblique angles: experiments and simulations [J]. International Journal of Impact Engineering, 2001, 25(1): 993–1022. DOI: 10.1016/S0734-743X(01)00024-0.
    [29]
    WARREN T L, HANCHAK S J, POORMAN K L. Penetration of limestone targets by ogive-nosed VAR 4340 steel projectiles at oblique angles: experiments and simulations [J]. International Journal of Impact Engineering, 2004, 30(10): 1307–1331. DOI: 10.1016/j.ijimpeng.2003.09.047.
    [30]
    LONGCOPE D B, TABBARA M R, JUNG J. Modeling of oblique penetration into geologic targets using cavity expansion penetrator loading with target free-surface effects: SAND99-1104 [R]. USA: Sandia National Laboratories, 1999.
    [31]
    MACEK R W, DUFFEY T A. Finite cavity expansion method for near-surface effects and layering during earth penetration [J]. International Journal of Impact Engineering, 2000, 24(3): 239–258. DOI: 10.1016/S0734-743X(99)00156-6.
    [32]
    WEN H M, YANG Y, HE T. Effects of abrasion on the penetration of ogival-nosed projectiles into concrete targets [J]. Latin American Journal of Solids and Structures, 2010, 7(4): 413–422. DOI: 10.1590/S1679-78252010000400003.
    [33]
    HE L L, CHEN X W. Analyses of penetration process considering mass loss [J]. European Journal of Mechanics A: Solids, 2011, 30(2): 145–157. DOI: 10.1016/j.euromechsol.2010.10.004.
    [34]
    王松川. 弹体斜侵彻弹道快速预测方法研究 [D]. 长沙: 国防科学技术大学, 2011

    WANG S C. Quick prediction method of oblique penetration trajectory [D]. Changsha, Hunan, China: National University of Defense Technology, 2011.
    [35]
    何涛, 文鹤鸣. 靶体响应力函数的确定方法及其在侵彻力学中的应用 [J]. 中国科学技术大学学报, 2007, 37(10): 1249–1261. DOI: 10.3969/j.issn.0253-2778.2007.10.017.

    HE T, WEN H M. Determination of analytical forcing function of target response and its applications in penetration mechanics [J]. Journal of University of Science and Technology of China, 2007, 37(10): 1249–1261. DOI: 10.3969/j.issn.0253-2778.2007.10.017.
    [36]
    郭虎, 何丽灵, 陈小伟, 等. 球形颗粒遮弹层对高速侵彻弹体的作用机理 [J]. 爆炸与冲击, 2020, 40(10): 103301. DOI: 10.11883/bzycj-2019-0428.

    GUO H, HE L L, CHEN X W, et al. Penetration mechanism of a high-speed projectile into a shelter made of spherical aggregate [J]. Explosion and Shock Waves, 2020, 40(10): 103301. DOI: 10.11883/bzycj-2019-0428.
    [37]
    FORRESTAL M J, LUK V K. Dynamic spherical cavity-expansion in a compressible elastic-plastic solid [J]. Journal of Applied Mechanics, 1988, 55(2): 275–279. DOI: 10.1115/1.3173672.
    [38]
    张林, 张祖根, 秦晓云, 等. D6A、921和45钢的动态破坏与低压冲击特性 [J]. 高压物理学报, 2003, 17(4): 305–310. DOI: 10.11858/gywlxb.2003.04.011.

    ZHANG L, ZHANG Z G, QIN X Y, et al. Dynamic fracture and mechanical property of D6A, 921 and 45 steels under low shock pressure [J]. Chinese Journal of High Pressure Physics, 2003, 17(4): 305–310. DOI: 10.11858/gywlxb.2003.04.011.
    [39]
    HE L L, CHEN X W, WANG Z H. Study on the penetration performance of concept projectile for high-speed penetration (CPHP) [J]. International Journal of Impact Engineering, 2016, 94: 1–12. DOI: 10.1016/j.ijimpeng.2016.03.010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (204) PDF downloads(116) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return