Citation: | XU Weizheng, ZHAO Hongtao, LI Yexun, HUANG Yu, FU Hua. An experimental study on dynamic response of cylindrical shell under near-field/contact underwater explosion[J]. Explosion And Shock Waves, 2023, 43(9): 091413. doi: 10.11883/bzycj-2023-0072 |
[1] |
姜涛, 王桂芹, 詹发民, 等. 基于AUTODYN的潜艇典型舱段水中爆炸冲击损伤研究 [J]. 爆破器材, 2015, 44(6): 61–64. DOI: 10.3969/j.issn.1001-8352.2015.06.014.
JIANG T, WANG G Q, ZHAN F M, et al. Impact damage analysis of typical submarine compartment subjected to underwater blasting based on AUTODYN [J]. Explosive Materials, 2015, 44(6): 61–64. DOI: 10.3969/j.issn.1001-8352.2015.06.014.
|
[2] |
YUAN J H, ZHU X. Dynamic response of a ring-stiffened cylindrical shell subjected to underwater explosive loading [J]. Applied Mechanics and Materials, 2011, 105: 931–936. DOI: 10.4028/www.scientific.net/AMM.105-107.931.
|
[3] |
BROCHARD K, LE SOURNE H, BARRAS G. Estimation of the response of a deeply immersed cylinder to the shock wave generated by an underwater explosion [J]. Marine Structures, 2020, 72: 102786. DOI: 10.1016/j.marstruc.2020.102786.
|
[4] |
NGUYEN V T, PHAN T H, DUY T N, et al. Numerical modeling for compressible two-phase flows and application to near-field underwater explosions [J]. Computers and Fluids, 2021, 215: 104805. DOI: 10.1016/j.compfluid.2020.104805.
|
[5] |
BRETT J M, YIANNAKOPOLOUS G. A study of explosive effects in close proximity to a submerged cylinder [J]. International Journal of Impact Engineering, 2008, 35(4): 206–225. DOI: 10.1016/j.ijimpeng.2007.01.007.
|
[6] |
BRETT J M, YIANNAKOPOULOS G, VAN DER SCHAAF P J. Time-resolved measurement of the deformation of submerged cylinders subjected to loading from a nearby explosion [J]. International Journal of Impact Engineering, 2000, 24(9): 875–890. DOI: 10.1016/S0734-743X(00)00023-3.
|
[7] |
HUNG C F, LIN B J, HWANG-FUU J J, et al. Dynamic response of cylindrical shell structures subjected to underwater explosion [J]. Ocean Engineering, 2009, 36(8): 564–577. DOI: 10.1016/j.oceaneng.2009.02.001.
|
[8] |
GANNON L. Submerged aluminum cylinder response to close-proximity underwater explosions-a comparison of experiment and simulation [J]. International Journal of Impact Engineering, 2019, 133: 103339. DOI: 10.1016/j.ijimpeng.2019.103339.
|
[9] |
GANNON L. Simulation of underwater explosions in close-proximity to a submerged cylinder and a free-surface or rigid boundary [J]. Journal of Fluids and Structures, 2019, 87: 189–205. DOI: 10.1016/j.jfluidstructs.2019.03.019.
|
[10] |
刘晓波, 李帅, 张阿漫. 水下爆炸冲击波壁压理论及数值计算方法改进研究 [J]. 爆炸与冲击, 2022, 42(1): 014202. DOI: 10.11883/bzycj-2021-0106.
LIU X B, LI S, ZHANG A M. An improvement of the wall-pressure theory and numerical method for shock waves in underwater explosion [J]. Explosion and Shock Waves, 2022, 42(1): 014202. DOI: 10.11883/bzycj-2021-0106.
|
[11] |
RAJENDRAN R, NARASIMHAN K. Damage prediction of clamped circular plates subjected to contact underwater explosion [J]. International Journal of Impact Engineering, 2001, 25(4): 373–386. DOI: 10.1016/S0734-743X(00)00051-8.
|
[12] |
周明, 赵云涛, 李万全, 等. JH-14装药水中爆炸特征研究 [J]. 爆破器材, 2019, 48(3): 18–22. DOI: 10.3969/j.issn.1001-8352.2019.03.004.
ZHOU M, ZHAO Y T, LI W Q, et al. Research on underwater explosion characteristics of JH-14 charge [J]. Explosive Materials, 2019, 48(3): 18–22. DOI: 10.3969/j.issn.1001-8352.2019.03.004.
|