Citation: | DENG Ximin, WU Haijun, DONG Heng, TIAN Ze, HUANG Fenglei. A study of high-velocity penetration characteristics and resistance model of elliptical cross-section truncated ogive projectile[J]. Explosion And Shock Waves, 2023, 43(9): 091406. doi: 10.11883/bzycj-2023-0074 |
[1] |
董恒. 椭圆截面弹体侵彻混凝土靶作用过程与结构响应研究 [D]. 北京理工大学, 2021.
DONG H. Penetration mechanism and structural response of elliptical cross-sectional projectile penetrating into concrete target[D]. Beijing: Beijing Institute of Technology, 2021.
|
[2] |
王浩. 椭圆变截面弹体贯穿加筋板破坏模式与偏转机理研究 [D]. 北京理工大学, 2020.
WANG H. The failure mode and deflection mechanism of projectiles with tapered-elliptic cross-section perforation into stiffened plates[D]. Beijing: Beijing Institute of Technology, 2020.
|
[3] |
DAI X H, WANG K H, LI M R, et al. Rigid elliptical cross-section ogive-nose projectiles penetration into concrete targets [J]. Defence Technology, 2021, 17(3): 800–811. DOI: 10.1016/j.dt.2020.05.011.
|
[4] |
魏海洋, 张先锋, 熊玮, 等. 椭圆截面弹体斜侵彻金属靶体弹道研究 [J]. 爆炸与冲击, 2022, 42(2): 023304. DOI: 10.11883/bzycj-2021-0291.
WEI H Y, ZHANG X F, XIONG W, et al. Oblique penetration of elliptical cross-section projectile into metal target [J]. Explosion and Shock Waves, 2022, 42(2): 023304. DOI: 10.11883/bzycj-2021-0291.
|
[5] |
田泽, 王浩, 武海军, 等. 椭圆变截面弹体斜贯穿薄靶姿态偏转机理研究 [J]. 兵工学报, 2022, 43(7): 1537–1552. DOI: 10.12382/bgxb.2021.0367.
TIAN Z, WANG H, WU H J, et al. Attitude deflection mechanism of projectiles with variable elliptical cross-sections obliquely perforating thin targets [J]. Acta Armamentarii, 2022, 43(7): 1537–1552. DOI: 10.12382/bgxb.2021.0367.
|
[6] |
WU H J, DENG X M, DONG H, et al. Three-dimensional trajectory prediction and analysis of elliptical projectile [J]. International Journal of Impact Engineering, 2023, 174: 104497. DOI: 10.1016/j.ijimpeng.2023.104497.
|
[7] |
LIU J W, LIU C, ZHANG X F, et al. Research on the penetration characteristics of elliptical cross-section projectile into semi-infinite metal targets [J]. International Journal of Impact Engineering, 2023, 173: 104438. DOI: 10.1016/j.ijimpeng.2022.104438.
|
[8] |
邓希旻, 田泽, 武海军, 等. 上下非对称结构弹体侵彻金属薄板的特性及薄板破坏形式[J]. 兵工学报, 2022. DOI: 10.12382/bgxb.2022.0724.
DENG X M, TIAN Z, WU H J, et al. Penetration characteristics and plate failure modes of asymmetric shaped projectiles penetrating thin metal targets[J]. Acta Armamentarii, 2022. DOI: 10.12382/bgxb.2022.0724.
|
[9] |
BACKMAN M E, GOLDSMITH W. The mechanics of penetration of projectiles into targets [J]. International Journal of Engineering Science, 1978, 16(1): 1–99. DOI: 10.1016/0020-7225(78)90002-2.
|
[10] |
RECHT R F, IPSON T W. Ballistic perforation dynamics [J]. Journal of Applied Mechanics, 1963, 30(3): 384. DOI: 10.1115/1.3636566.
|
[11] |
AWERBUCH J, BODNER S R. Analysis of the mechanics of perforation of projectiles in metallic plates [J]. International Journal of Solids and Structures, 1974, 10(6): 671–684. DOI: 10.1016/0020-7683(74)90050-x.
|
[12] |
CHEN X W, LI Q M. Shear plugging and perforation of ductile circular plates struck by a blunt projectile [J]. International Journal of Impact Engineering, 2003, 28(5): 513–536. DOI: 10.1016/S0734-743X(02)00077-5.
|
[13] |
WEN H M, JONES N. Low-velocity perforation of punch-impact-loaded metal plates [J]. Journal of Pressure Vessel Technology-Transactions of the Asme, 1996, 118(2): 181–187. DOI: 10.1115/1.2842178.
|
[14] |
ROSENBERG Z, DEKEL E. Revisiting the perforation of ductile plates by sharp-nosed rigid projectiles [J]. International Journal of Solids and Structures, 2010, 47(22/23): 3022–3033. DOI: 10.1016/j.ijsolstr.2010.07.003.
|
[15] |
CHEN X W, HUANG X L, LIANG G J. Comparative analysis of perforation models of metallic plates by rigid sharp-nosed projectiles [J]. International Journal of Impact Engineering, 2011, 38(7): 613–621. DOI: 10.1016/j.ijimpeng.2010.12.005.
|
[16] |
MASRI R. Practical formulae for predicting the ballistic limit velocity of armour perforation by ductile hole growth [J]. International Journal of Impact Engineering, 2022, 167: 104219. DOI: 10.1016/j.ijimpeng.2022.104219.
|
[17] |
CHEN X W, LI Q M, FAN S C. Initiation of adiabatic shear failure in a clamped circular plate struck by a blunt projectile [J]. International Journal of Impact Engineering, 2005, 31(7): 877–893. DOI: 10.1016/j.ijimpeng.2004.04.011.
|
[18] |
BORVIK T, HOPPERSTAD O S, LANGSETH M, et al. Effect of target thickness in blunt projectile penetration of Weldox 460 E steel plates [J]. International Journal of Impact Engineering, 2003, 28(4): 413–464. DOI: 10.1016/S0734-743x(02)00072-6.
|
[19] |
RUSINEK A, RODRíGUEZ-MARTíNEZ J A, ZAERA R, et al. Experimental and numerical study on the perforation process of mild steel sheets subjected to perpendicular impact by hemispherical projectiles [J]. International Journal of Impact Engineering, 2009, 36(4): 565–587. DOI: 10.1016/j.ijimpeng.2008.09.004.
|
[20] |
陈小伟, 梁冠军, 姚勇, 等. 平头弹穿透金属靶板的模式分析 [J]. 力学学报, 2009, 41(1): 84–90. DOI: 10.6052/0459-1879-2009-1-2007-572.
CHEN X W, LIANG G J, YAO Y, et al. Perforation modes of metal plates struck by a blunt rigid projectile[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(1): 84–90. DOI: 10.6052/0459-1879-2009-1-2007-572.
|
[21] |
MAE H, TENG X, BAI Y, et al. Comparison of ductile fracture properties of aluminum castings: Sand mold vs. metal mold [J]. International Journal of Solids and Structures, 2008, 45(5): 1430–1444. DOI: 10.1016/j.ijsolstr.2007.10.016.
|
[22] |
李营. 反舰导弹舱内爆炸作用下舱室结构毁伤与防护机理 [D]. 武汉:武汉理工大学, 2017.
LI Y. Damage and protective mechanism of cabins under anti-ship missile internal blast [D]. Wuhan: Wuhan University of Technology, 2017.
|
[23] |
DONG H, LIU Z H, WU H J, et al. Study on penetration characteristics of high-speed elliptical cross-sectional projectiles into concrete [J]. International Journal of Impact Engineering, 2019, 132: 103311. DOI: 10.1016/j.ijimpeng.2019.05.025.
|
[24] |
王浩, 潘鑫, 武海军, 等. 椭圆截面截卵形刚性弹体正贯穿加筋板能量耗散分析 [J]. 爆炸与冲击, 2019, 39(10): 103203. DOI: 10.11883/bzycj-2018-0350.
WANG H, PAN X, WU H J, et al. Energy dissipation analysis of elliptical truncated oval rigid projectile penetrating stiffened plate[J]. Explosion and Shock Waves, 2019, 39(10): 69–80. DOI: 10.11883/bzycj-2018-0350.
|
[25] |
DENG X M, WU H J, YANG X, et al. Preformed fragment velocity distribution of elliptical cross-section projectile [J]. Latin American Journal of Solids and Structures, 2022, 19(1): e423. DOI: 10.1590/1679-78256835.
|
[26] |
TENG X, WIERZBICKI T. Dynamic shear plugging of beams and plates with an advancing crack [J]. International Journal of Impact Engineering, 2005, 31(6): 667–698. DOI: 10.1016/j.ijimpeng.2004.03.013.
|
[27] |
VERSHININ V V. Validation of metal plasticity and fracture models through numerical simulation of high velocity perforation [J]. International Journal of Solids and Structures, 2015, 67/68: 127–138. DOI: 10.1016/j.ijsolstr.2015.04.007.
|
[28] |
MASRI R. Ballistically equivalent aluminium targets and the effect of hole slenderness ratio on ductile plate perforation [J]. International Journal of Impact Engineering, 2015, 80: 45–55. DOI: 10.1016/j.ijimpeng.2015.01.003.
|
[29] |
MASRI R, DURBAN D. Quasi-static cylindrical cavity expansion in an elastoplastic compressible Mises solid [J]. International Journal of Solids and Structures, 2006, 43(25/26): 7518–7533. DOI: 10.1016/j.ijsolstr.2006.03.012.
|
[30] |
STANLEY M. Lasl shock hugoniot data [M]. Berkeley: University of California Press, 1980.
|
[31] |
LI Q M, JONES N. Shear and adiabatic shear failures in an impulsively loaded fully clamped beam [J]. International Journal of Impact Engineering, 1999, 22(6): 589–607. DOI: 10.1016/s0734-743x(99)00013-5.
|
[32] |
BØRVIK T, LANGSETH M, O. SHOPPERSTAD, et al. Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses: part I: experimental study [J]. International Journal of Impact Engineering, 2001, 27(1): 19–35. DOI: 10.1016/S0734-743X(01)00034-3.
|
[33] |
BEN-DOR G, DUBINSKY A, ELPERIN T. Shape optimization of high-speed penetrators: a review [J]. Open Engineering, 2012, 2(4): 473–482. DOI: 10.2478/s13531-012-0022-4.
|