Citation: | WANG Wu, YANG Jun, WANG Anbao, ZHOU Bukui, LI Xiaojun. A study of the design and calculation method of double-skin steel-concrete shield based on energy approach[J]. Explosion And Shock Waves, 2023, 43(11): 114203. doi: 10.11883/bzycj-2023-0086 |
[1] |
任辉启, 穆朝民, 刘瑞朝, 等. 精确制导武器侵彻效应与工程防护 [M]. 北京: 科学出版社, 2016: 1–19.
REN H Q, MU Z M, LIU R Z, et al. Penetration effects of precision guided weapons and engineering protection [M]. Beijing, China: Science Press, 2016: 1–19.
|
[2] |
吴应祥, 秦有权, 徐翔宇. 矢量型抗侵彻结构研究进展 [J]. 防护工程, 2022, 44(6): 36–42. DOI: 10.3969/j.issn.1674-1854.2022.06.006.
WU Y X, QIN Y Q, XU X Y. Progress on vector-based anti-penetration structure research [J]. Protective Engineering, 2022, 44(6): 36–42. DOI: 10.3969/j.issn.1674-1854.2022.06.006.
|
[3] |
樊健生, 丁然, 聂鑫, 等. 高性能双钢板混凝土结构研究与应用 [J]. 建筑结构学报, 2022, 43(9): 55–72. DOI: 10.14006/j.jzjgxb.2022.0076.
FAN J S, DING R, NIE X, et al. Research and application of high-performance double steel-plate reinforced concrete structures [J]. Journal of Building Structures, 2022, 43(9): 55–72. DOI: 10.14006/j.jzjgxb.2022.0076.
|
[4] |
REMENNIKOV A M, KONG S Y. Numerical simulation and validation of impact response of axially-restrained steel-concrete-steel sandwich panels [J]. Composite Structures, 2012, 94(12): 3546–3555. DOI: 10.1016/j.compstruct.2012.05.011.
|
[5] |
REMENNIKOV A M, KONG S Y, UY B. The response of axially restrained non-composite steel-concrete-steel sandwich panels due to large impact loading [J]. Engineering Structures, 2013, 49: 806–818. DOI: 10.1016/j.engstruct.2012.11.014.
|
[6] |
ZHAO W Y, GUO Q Q, DOU X Q, et al. Impact response of steel-concrete composite panels: experiments and FE analyses [J]. Steel and Composite Structures, 2018, 26(3): 255–263. DOI: 10.12989/scs.2018.26.3.255.
|
[7] |
安国青, 王蕊, 赵晖, 等. 双钢板混凝土组合板在撞击荷载下的动力响应 [J]. 东北大学学报(自然科学版), 2022, 43(8): 1192–1200. DOI: 10.12068/j.issn.1005-3026.2022.08.017.
AN G Q, WANG R, ZHAO H, et al. Dynamic response of double-skin steel-concrete composite panel under impact loading [J]. Journal of Northeastern University (Natural Science), 2022, 43(8): 1192–1200. DOI: 10.12068/j.issn.1005-3026.2022.08.017.
|
[8] |
HASHIMOTO J, TAKIGUCHI K, NISHIMURA K, et al. Experimental study on behavior of RC panels covered with steel plates subjected to missile impact [C]//Proceedings of the 18th International Association for Structural Mechanics in Reactor Technology. Beijing, China: IASMiRT, 2005: 2604–2615.
|
[9] |
WALTER T A, WOLDE-TINSAE A M. Turbine missile perforation of reinforced concrete [J]. Journal of Structural Engineering, 1984, 110(10): 2439–2455. DOI: 10.1061/(ASCE)0733-9445(1984)110:10(2439).
|
[10] |
TSUBOTA H, KASAI Y, KOSHIKA N, et al. Quantitative studies on impact resistance of reinforced concrete panels with steel liners under impact loading. part 1: scaled model impact tests[C]//Proceedings of the 12th International Association for Structural Mechanics in Reactor Technology. Stuttgart, Germany: IASMiRT, 1993: 169–174.
|
[11] |
SUGANO T, TSUBOTA H, KASAI Y, et al. Local damage to reinforced concrete structures caused by impact of aircraft engine missiles. part 1: test program, method and results [J]. Nuclear Engineering and Design, 1993, 140(3): 387–405. DOI: 10.1016/0029-5493(93)90120-X.
|
[12] |
BARR P, CARTER P G, HOWE W D, et al. Experimental studies of the impact resistance of steel faced concrete composites [C]//Proceedings of the 7th International Association for Structural Mechanics in Reactor Technology. Chicago, USA: IASMiRT, 1983: 395–402.
|
[13] |
MIZUNO J, KOSHIKA N, SAWAMOTO Y, et al. Investigation on impact resistance of steel plate reinforced concrete barriers against aircraft impact. part 1: test program and results [C]//Proceedings of the 18th International Association for Structural Mechanics in Reactor Technology. Beijing, China: IASMiRT, 2005: 2566–2679.
|
[14] |
ABDEL-KADER M, FOUDA A. Effect of reinforcement on the response of concrete panels to impact of hard projectiles [J]. International Journal of Impact Engineering, 2014, 63: 1–17. DOI: 10.1016/j.ijimpeng.2013.07.005.
|
[15] |
KIM K S, MOON I H, CHOI H J, et al. A preliminary study on the local impact behavior of steel-plate concrete walls [J]. Annals of Nuclear Energy, 2017, 102: 210–219. DOI: 10.1016/j.anucene.2016.12.006.
|
[16] |
WU H, FANG Q, PENG Y, et al. Hard projectile perforation on the monolithic and segmented RC panels with a rear steel liner [J]. International Journal of Impact Engineering, 2015, 76: 232–250. DOI: 10.1016/j.ijimpeng.2014.10.010.
|
[17] |
ABDEL-KADER M, FOUDA A. Equivalent concrete thickness for perforation of mild steel plates [J]. Journal of Constructional Steel Research, 2017, 135: 213–229. DOI: 10.1016/j.jcsr.2017.04.016.
|
[18] |
程毅, 刘军, 郑雨晴, 等. 钢板混凝土复合靶抗贯穿性能的理论与数值分析 [J]. 应用力学学报, 2020, 37(4): 1441–1449. DOI: 10.11776/cjam.37.04.B056.
CHENG Y, LIU J, ZHENG Y Q, et al. Theoretical and numerical investigation of perforation resistance of steel-concrete composite target [J]. Chinese Journal of Applied Mechanics, 2020, 37(4): 1441–1449. DOI: 10.11776/cjam.37.04.B056.
|
[19] |
BRUHL J C, VARMA A H, JOHNSON W H. Design of composite SC walls to prevent perforation from missile impact [J]. International Journal of Impact Engineering, 2015, 75: 75–87. DOI: 10.1016/j.ijimpeng.2014.07.015.
|
[20] |
王菲, 刘晶波, 韩鹏飞, 等. 核工程钢板混凝土墙防撞击贯穿实用计算方法 [J]. 爆炸与冲击, 2020, 40(10): 105101. DOI: 10.11883/bzycj-2020-0020.
WANG F, LIU J B, HAN P F, et al. A practical calculation method of steel plate concrete walls to resist perforation from missile impact in nuclear engineering [J]. Explosion and Shock Waves, 2020, 40(10): 105101. DOI: 10.11883/bzycj-2020-0020.
|
[21] |
BØRVIK T, CLAUSEN A H, HOPPERSTAD O S, et al. Perforation of AA5083-H116 aluminium plates with conical-nose steel projectiles: experimental study [J]. International Journal of Impact Engineering, 2004, 30(4): 367–384. DOI: 10.1016/S0734-743X(03)00072-1.
|
[22] |
王明洋, 张胜民, 国胜兵. 接触爆炸作用下钢板-钢纤维混凝土遮弹层设计方法(I) [J]. 爆炸与冲击, 2002, 22(1): 40–45. DOI: 10.3321/j.issn:1001-1455.2002.01.008.
WANG M Y, ZHANG S M, GUO S B. Design method of steel and steel-fiber concrete shelter plate under contact detonation [J]. Explosion and Shock Waves, 2002, 22(1): 40–45. DOI: 10.3321/j.issn:1001-1455.2002.01.008.
|
[23] |
王明洋, 钱七虎, 赵跃堂. 接触爆炸作用下钢板-钢纤维钢筋混凝土遮弹层设计方法(II) [J]. 爆炸与冲击, 2002, 22(2): 163–168. DOI: 10.3321/j.issn:1001-1455.2002.02.012.
WANG M Y, QIAN Q H, ZHAO Y T. The design method for shelter plate of steel plate and steel fiber reinforced concrete under contact detonation [J]. Explosion and Shock Waves, 2002, 22(2): 163–168. DOI: 10.3321/j.issn:1001-1455.2002.02.012.
|
[24] |
CHEN X W, HUANG X L, LIANG G J. Comparative analysis of perforation models of metallic plates by rigid sharp-nosed projectiles [J]. International Journal of Impact Engineering, 2011, 38(7): 613–621. DOI: 10.1016/j.ijimpeng.2010.12.005.
|
[25] |
FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4.
|
[26] |
FORRESTAL M J, WARREN T L. Perforation equations for conical and ogival nose rigid projectiles into aluminum target plates [J]. International Journal of Impact Engineering, 2009, 36(2): 220–225. DOI: 10.1016/j.ijimpeng.2008.04.005.
|
[27] |
CHEN X W, LI Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics [J]. International Journal of Impact Engineering, 2002, 27(6): 619–637. DOI: 10.1016/s0734-743x(02)00005-2.
|
[28] |
PENG Y, WU H, FANG Q, et al. A note on the deep penetration and perforation of hard projectiles into thick targets [J]. International Journal of Impact Engineering, 2015, 85: 37–44. DOI: 10.1016/j.ijimpeng.2015.06.013.
|
[29] |
中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 混凝土物理力学性能试验方法标准: GB/T 50081—2019 [S]. 北京: 中国建筑工业出版社, 2019: 145–146.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China, State Administration for Market Regulation. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019 [S]. Beijing, China: China Architecture and Building Press, 2019: 145–146.
|
[30] |
PENG Y, WU H, FANG Q, et al. Residual velocities of projectiles after normally perforating the thin ultra-high performance steel fiber reinforced concrete slabs [J]. International Journal of Impact Engineering, 2016, 97: 1–9. DOI: 10.1016/j.ijimpeng.2016.06.006.
|
[31] |
张爽, 武海军, 黄风雷. 弹体侵彻钢筋混凝土靶开坑深度研究 [J]. 北京理工大学学报, 2018, 38(6): 565–571. DOI: 10.15918/j.tbit1001-0645.2018.06.003.
ZHANG S, WU H J, HUANG F L. Investigation on crater depth of projectile penetrating into reinforced concrete target [J]. Transactions of Beijing Institute of Technology, 2018, 38(6): 565–571. DOI: 10.15918/j.tbit1001-0645.2018.06.003.
|
[32] |
KARAGIOZOVA D, YU T X, SHI S Y, et al. On the influence of elasticity on the large deflections response of circular plates to uniform quasi-static pressure [J]. International Journal of Mechanical Sciences, 2017, 131/132: 894–907. DOI: 10.1016/j.ijmecsci.2017.07.032.
|
[33] |
KYOHEI K, PIAN T H H. Large deformations of rigid-plastic circular plates [J]. International Journal of Solids and Structures, 1981, 17(11): 1043–1055. DOI: 10.1016/0020-7683(81)90012-3.
|
[34] |
纪冲, 龙源, 高振儒, 等. 弹丸冲击贯穿有限厚混凝土材料靶板的背面成坑效应 [J]. 振动与冲击, 2013, 32(4): 85–89,101. DOI: 10.13465/j.cnki.jvs.2013.04.003.
JI C, LONG Y, GAO Z R, et al. Rear face crater-forming of a limited-thickness concrete target due to projectile penetrating [J]. Journal of Vibration and Shock, 2013, 32(4): 85–89, 101. DOI: 10.13465/j.cnki.jvs.2013.04.003.
|
[35] |
CLOETE T J, NURICK G N. On the influence of radial displacements and bending strains on the large deflections of impulsively loaded circular plates [J]. International Journal of Mechanical Sciences, 2014, 82: 140–148. DOI: 10.1016/j.ijmecsci.2014.02.026.
|
[36] |
吴迪, 米国, 郭香华, 等. 空爆载荷作用下固支弹塑性圆板的动力学模型 [J]. 高压物理学报, 2022, 36(5): 054202. DOI: 10.11858/gywlxb.20220525.
WU D, MI G, GUO X H, et al. Dynamic model of clamped elastoplastic circular plate under air blast loading [J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 054202. DOI: 10.11858/gywlxb.20220525.
|
[37] |
王安宝, 邓国强, 张磊, 等. 混凝土侵彻公式的合理性分析 [J]. 防护工程, 2020, 42(6): 1–7. DOI: 10.3969/j.issn.1674-1854.2020.06.001.
WANG A B, DENG G Q, ZHANG L, et al. Analysis on the rationality of concrete penetration formula [J]. Protective Engineering, 2020, 42(6): 1–7. DOI: 10.3969/j.issn.1674-1854.2020.06.001.
|
[38] |
龚自明, 方秦, 张亚栋, 等. 混凝土靶体侵彻不贯穿系数的试验研究 [J]. 兵工学报, 2009, 30(9): 1181–1186. DOI: 10.3321/j.issn:1000-1093.2009.09.006.
GONG Z M, FANG Q, ZHANG Y D, et al. Experimental investigation into coefficients of concrete targets to prevent perforation [J]. Acta Armamentarii, 2009, 30(9): 1181–1186. DOI: 10.3321/j.issn:1000-1093.2009.09.006.
|
[39] |
陈小伟. 穿甲/侵彻力学的理论建模与分析(上册) [M]. 北京: 科学出版社, 2019: 249–264.
CHEN X W. Modelling on the perforation and penetration (I) [M]. Beijing, China: Science Press, 2019: 249–264.
|