Citation: | CHENG Shuai, TONG Nianxue, LIU Wenxiang, YIN Wenjun, LI Qinchao, ZHANG Dezhi. A control method for attenuation history of shock wave generated by blast simulation shock tube based on high pressure gas driving technic[J]. Explosion And Shock Waves, 2024, 44(5): 052201. doi: 10.11883/bzycj-2023-0094 |
[1] |
任辉启, 王世合, 周松柏, 等. 大型爆炸波模拟装置研制及其应用 [C]//第十六届全国激波与激波管学术会议论文集. 河南,洛阳: 中国力学学会激波与激波管专业委员会, 2014.
|
[2] |
NIAN W M, SUBRAMANIAM K V L, ANDREOPOULOS Y. Experimental investigation on blast response of cellular concrete [J]. International Journal of Impact Engineering, 2016, 96: 105–115. DOI: 10.1016/j.ijimpeng.2016.05.021.
|
[3] |
RENEER D V, HISEL R D, HOFFMAN J M, et al. A multi-mode shock tube for investigation of blast-induced traumatic brain injury [J]. Journal of Neurotrauma, 2011, 28(1): 95–104. DOI: 10.1089/neu.2010.1513.
|
[4] |
RESLER E L, LIN S C, KANTROWITZ A. The production of high temperature gases in shock tubes [J]. Journal of Applied Physics, 1952, 23(12): 1390–1399. DOI: 10.1063/1.1702080.
|
[5] |
CHESTER W. The quasi-cylindrical shock tube [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(371): 1293–1301. DOI: 10.1080/1478641208561138.
|
[6] |
CHISNELL R F. The motion of a shock wave in a channel, with applications to cylindrical and spherical shock waves [J]. Journal of Fluid Mechanics, 1957, 2(3): 286–298. DOI: 10.1017/S0022112057000130.
|
[7] |
WHITHAM G B. On the propagation of shock waves through regions of non-uniform area or flow [J]. Journal of Fluid Mechanics, 1958, 4(4): 337–360. DOI: 10.1017/S0022112058000495.
|
[8] |
CHESTER W. The propagation of shock waves along ducts of varying cross section [J]. Advances in Applied Mechanics, 1960, 6: 119–152. DOI: 10.1016/S0065-2156(08)70111-X.
|
[9] |
COULTER G A, BULMASH G, KINGERY C. Feasibility study of shock wave modification in the BRL 2.44 m blast simulator: AD-A139631 [R]. U.S. Army Ballistic Research Laboratory, 1984.
|
[10] |
HISLEY D M. Computational studies of wave-shaping in a blast simulator by perforated plates in the driver: AD-A188200 [R]. Aberdeen, UK: Ballistic Research Laboratory, 1987.
|
[11] |
MARK A. Computational design of large-scale blast simulators [C]//19th Aerospace Sciences Meeting. St. Louis: AIAA, 1981.
|
[12] |
OPALKA K O. Large blast and thermal simulator advanced concept driver design by computational fluid dynamics: AD-A-211364 [R]. Aberdeen, UK: Ballistics Research Laboratory, 1989.
|
[13] |
JOSEY T, SAWYER T W. High fidelity simulation of free-field blast loading: the importance of dynamic pressure: DRDC-RDDC-2018-P003 [R]. Canada: Defense Research and Development, 2016.
|
[14] |
GION E J. A multidriver shock tube model of a large blast simulator: AD-A208324 [R]. U.S. Army Ballistic Research Laboratory, 1989.
|
[15] |
SCHRAML S J. Performance predictions for the large blast/thermal simulator based on experimental and computational results: AD-A-235728 [R]. Aberdeen, UK: Ballistics Research Laboratory, 1991.
|
[16] |
张德良. 计算流体力学教程 [M]. 北京: 高等教育出版社, 2010: 151.
ZHANG D L. A course in computational fluid dynamics [M]. Beijing: Higher Education Press, 2010: 151.
|
[17] |
OPALKA K O, MARK A. The BRL-Q1D Code: a tool for the numerical simulation of flows in shock tubes with variable cross-sectional areas: AD-A174254 [R]. U.S. Army Ballistic Research Laboratory, 1986.
|
[18] |
SCHRAML S J, PEARSON R J. Computer programs for LB/TS test design: technical description, usage instructions and source code listings: AD-A-299247 [R]. Aberdeen, UK: Ballistics Research Laboratory, 1995.
|
[19] |
刘剑平, 陆元鸿, 曹宵临. 概率论与数理统计方法 [M]. 2版. 上海: 华东理工出版社, 2004: 186–195.
|
[1] | CHEN Ziwei, WANG Zhongqi, ZENG Linghui. A method for predicting peak pressure in an explosion shock tube based on BP neural network[J]. Explosion And Shock Waves, 2024, 44(5): 054101. doi: 10.11883/bzycj-2023-0187 |
[2] | ZHANG Shizhong, LI Jinping, KANG Yue, HU Jianqiao, CHEN Hong. Generation of near-field blast wave by means of shock tube[J]. Explosion And Shock Waves, 2024, 44(12): 121434. doi: 10.11883/bzycj-2024-0204 |
[3] | LIU Bowen, LONG Renrong, ZHANG Qingming, JU Yuanyuan, ZHONG Xianzhe, WANG Haiyang, LIU Wenjin. Study on the corner overpressure characteristics of concentrated reflected shock wave due to internal blast in cabin[J]. Explosion And Shock Waves, 2023, 43(1): 012201. doi: 10.11883/bzycj-2022-0232 |
[4] | ZHANG Tengyue, XIAO Chuan, CHEN Pengwan, JIAO Xiaolong, WU Zongya, CHEN Fang. Experimental study on the lethality of blasting warhead with PEEK shell[J]. Explosion And Shock Waves, 2023, 43(9): 091414. doi: 10.11883/bzycj/2022-0477 |
[5] | CHEN De, WU Hao, XU Shilin, WEI Jianshu. Shock tube tests and dynamic behavior analyses on one-way masonry-infilled walls[J]. Explosion And Shock Waves, 2023, 43(8): 085103. doi: 10.11883/bzycj-2023-0147 |
[6] | DAI Xianghui, WANG Kehui, ZHOU Gang, LI Ming, SHEN Zikai, DUAN Jian, LI Pengjie, YANG Hui, WU Haijun. Experimental study on explosion characteristics of penetrator with elliptical cross-section[J]. Explosion And Shock Waves, 2023, 43(5): 053302. doi: 10.11883/bzycj-2022-0079 |
[7] | CHAO Hongxiao, HU Hao, LEI Qiang, GAO Rui, YAO Guoqing. Experimental study on shock wave from dynamic explosion of a warhead based on seismic wave triggering[J]. Explosion And Shock Waves, 2021, 41(8): 083201. doi: 10.11883/bzycj-2020-0196 |
[8] | KANG Yue, ZHANG Shizhong, ZHANG Yuanping, LIU Zhanli, HUANG Xiancong, MA Tian. Research on anti-shockwave performance of the protective equipment for the head of a soldier based on shock tube evaluation[J]. Explosion And Shock Waves, 2021, 41(8): 085901. doi: 10.11883/bzycj-2020-0395 |
[9] | LIU Erwei, XU Shengli. Influence of ignition criterion and dilution gas on ignition delay of ethylene[J]. Explosion And Shock Waves, 2020, 40(6): 062101. doi: 10.11883/bzycj-2019-0402 |
[10] | DAI Xianghui, WANG Kehui, SHEN Zikai, DUAN Jian, LI Ming, GU Renhong, LI Pengjie, YANG Hui, KE Ming, ZHOU Gang. Experiment of fast cook-off safety characteristic for penetrator[J]. Explosion And Shock Waves, 2020, 40(9): 092301. doi: 10.11883/bzycj/2020-0016 |
[11] | LI Bo, HUANG Nan, YANG Jun, QIN Haifeng, YIN Xiao, ZHANG Zhaojing. Effects of medium and static pressure on dynamic characteristics of piezoresistive absolute pressure sensor calibrated by shock tube[J]. Explosion And Shock Waves, 2020, 40(5): 054101. doi: 10.11883/bzycj-2019-0309 |
[12] | HU Yang, YIN Shangxian, Bjørn J. ARNTZEN, ZHU Jianfang, LI Xuebing, Ragnhild Dybdal OIE, QIN Hansheng. Experimental study of multi-objective coupling synchronous control in gas/air premixed gas deflagration flow test system[J]. Explosion And Shock Waves, 2019, 39(9): 094201. doi: 10.11883/bzycj-2018-0312 |
[13] | HE Qiguang, ZHANG Wei, CHEN Xiaowei, XU Jianpeng. Analysis on the deformation process of PET shock tube diaphragm[J]. Explosion And Shock Waves, 2019, 39(3): 033201. doi: 10.11883/bzycj-2017-0409 |
[14] | WANG Xinying, WANG Shushan, LU Xi, WANG Jianmin. Overpressure-impulse damage criterion of air shock waves on biological targets[J]. Explosion And Shock Waves, 2018, 38(1): 106-111. doi: 10.11883/bzycj-2017-0031 |
[15] | Huang Xilong, Liao Shenfei, Zou Liyong, Liu Jinhong, Cao Renyi. Experiment on interaction of shock and elliptic heavy-gas cylinder by using PLIF[J]. Explosion And Shock Waves, 2017, 37(5): 829-836. doi: 10.11883/1001-1455(2017)05-0829-08 |
[16] | Nie Yuan, Jiang Jianwei, Li Mei. Overpressure calculation model of sphere charge blastingwith moving velocity[J]. Explosion And Shock Waves, 2017, 37(5): 951-956. doi: 10.11883/1001-1455(2017)05-0951-06 |
[17] | Jiang Qi, Liu Tong, Wang Ru -heng, Pan Ting. Action of explosion shock wave on three kinds of architectural glass[J]. Explosion And Shock Waves, 2014, 34(2): 229-234. doi: 10.11883/1001-1455(2014)02-0229-06 |
[18] | DingYong-hong, YouWen-bin, MaTie-hua. Designandapplicationofashockwaverecorderusedin warshipsubjectedtodynamicexplosive[J]. Explosion And Shock Waves, 2013, 33(2): 194-199. doi: 10.11883/1001-1455(2013)02-0194-06 |
[19] | LIU Jin-hong, ZOU Li-yong, BAI Jing-song, TAN Duo-wang, HUANG Wen-bin, GUO Wen-can. Richtmyer-Meshkovinstabilityofshock-acceleratedair/SF6interfaces[J]. Explosion And Shock Waves, 2011, 31(2): 135-140. doi: 10.11883/1001-1455(2011)02-0135-06 |
[20] | 西北核技术研究所, 陕西, 西安. Application of sound-vibration coupling analysis in shock wave measurement[J]. Explosion And Shock Waves, 2008, 28(5): 427-432. doi: 10.11883/1001-1455(2008)05-0427-06 |