Citation: | CHENG Shuai, TONG Nianxue, LIU Wenxiang, YIN Wenjun, LI Qinchao, ZHANG Dezhi. A control method for attenuation history of shock wave generated by blast simulation shock tube based on high pressure gas driving technic[J]. Explosion And Shock Waves, 2024, 44(5): 052201. doi: 10.11883/bzycj-2023-0094 |
[1] |
任辉启, 王世合, 周松柏, 等. 大型爆炸波模拟装置研制及其应用 [C]//第十六届全国激波与激波管学术会议论文集. 河南,洛阳: 中国力学学会激波与激波管专业委员会, 2014.
|
[2] |
NIAN W M, SUBRAMANIAM K V L, ANDREOPOULOS Y. Experimental investigation on blast response of cellular concrete [J]. International Journal of Impact Engineering, 2016, 96: 105–115. DOI: 10.1016/j.ijimpeng.2016.05.021.
|
[3] |
RENEER D V, HISEL R D, HOFFMAN J M, et al. A multi-mode shock tube for investigation of blast-induced traumatic brain injury [J]. Journal of Neurotrauma, 2011, 28(1): 95–104. DOI: 10.1089/neu.2010.1513.
|
[4] |
RESLER E L, LIN S C, KANTROWITZ A. The production of high temperature gases in shock tubes [J]. Journal of Applied Physics, 1952, 23(12): 1390–1399. DOI: 10.1063/1.1702080.
|
[5] |
CHESTER W. The quasi-cylindrical shock tube [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(371): 1293–1301. DOI: 10.1080/1478641208561138.
|
[6] |
CHISNELL R F. The motion of a shock wave in a channel, with applications to cylindrical and spherical shock waves [J]. Journal of Fluid Mechanics, 1957, 2(3): 286–298. DOI: 10.1017/S0022112057000130.
|
[7] |
WHITHAM G B. On the propagation of shock waves through regions of non-uniform area or flow [J]. Journal of Fluid Mechanics, 1958, 4(4): 337–360. DOI: 10.1017/S0022112058000495.
|
[8] |
CHESTER W. The propagation of shock waves along ducts of varying cross section [J]. Advances in Applied Mechanics, 1960, 6: 119–152. DOI: 10.1016/S0065-2156(08)70111-X.
|
[9] |
COULTER G A, BULMASH G, KINGERY C. Feasibility study of shock wave modification in the BRL 2.44 m blast simulator: AD-A139631 [R]. U.S. Army Ballistic Research Laboratory, 1984.
|
[10] |
HISLEY D M. Computational studies of wave-shaping in a blast simulator by perforated plates in the driver: AD-A188200 [R]. Aberdeen, UK: Ballistic Research Laboratory, 1987.
|
[11] |
MARK A. Computational design of large-scale blast simulators [C]//19th Aerospace Sciences Meeting. St. Louis: AIAA, 1981.
|
[12] |
OPALKA K O. Large blast and thermal simulator advanced concept driver design by computational fluid dynamics: AD-A-211364 [R]. Aberdeen, UK: Ballistics Research Laboratory, 1989.
|
[13] |
JOSEY T, SAWYER T W. High fidelity simulation of free-field blast loading: the importance of dynamic pressure: DRDC-RDDC-2018-P003 [R]. Canada: Defense Research and Development, 2016.
|
[14] |
GION E J. A multidriver shock tube model of a large blast simulator: AD-A208324 [R]. U.S. Army Ballistic Research Laboratory, 1989.
|
[15] |
SCHRAML S J. Performance predictions for the large blast/thermal simulator based on experimental and computational results: AD-A-235728 [R]. Aberdeen, UK: Ballistics Research Laboratory, 1991.
|
[16] |
张德良. 计算流体力学教程 [M]. 北京: 高等教育出版社, 2010: 151.
ZHANG D L. A course in computational fluid dynamics [M]. Beijing: Higher Education Press, 2010: 151.
|
[17] |
OPALKA K O, MARK A. The BRL-Q1D Code: a tool for the numerical simulation of flows in shock tubes with variable cross-sectional areas: AD-A174254 [R]. U.S. Army Ballistic Research Laboratory, 1986.
|
[18] |
SCHRAML S J, PEARSON R J. Computer programs for LB/TS test design: technical description, usage instructions and source code listings: AD-A-299247 [R]. Aberdeen, UK: Ballistics Research Laboratory, 1995.
|
[19] |
刘剑平, 陆元鸿, 曹宵临. 概率论与数理统计方法 [M]. 2版. 上海: 华东理工出版社, 2004: 186–195.
|