Citation: | LI Yanchao, LIANG Bo, JIANG Yuting. Prediction of natural gas explosion overpressure considering external turbulence[J]. Explosion And Shock Waves, 2023, 43(11): 115402. doi: 10.11883/bzycj-2023-0098 |
[1] |
KAMINSKI C F, HULT J, ALDÉN M, et al. Spark ignition of turbulent methane/air mixtures revealed by time-resolved planar laser-induced fluorescence and direct numerical simulations [J]. Proceedings of the Combustion Institute, 2000, 28(1): 399–405. DOI: 10.1016/S0082-0784(00)80236-2.
|
[2] |
VAN OIJEN J A, GROOT G R A, BASTIAANS R J M, et al. A flamelet analysis of the burning velocity of premixed turbulent expanding flames [J]. Proceedings of the Combustion Institute, 2005, 30(1): 657–664. DOI: 10.1016/j.proci.2004.08.159.
|
[3] |
CAI X, WANG J H, BIAN Z J, et al. Self-similar propagation and turbulent burning velocity of CH4/H2/air expanding flames: effect of Lewis number [J]. Combustion and Flame, 2020, 212: 1–12. DOI: 10.1016/j.combustflame.2019.10.019.
|
[4] |
FAIRWEATHER M, ORMSBY M P, SHEPPARD C G W, et al. Turbulent burning rates of methane and methane-hydrogen mixtures [J]. Combustion and Flame, 2009, 156(4): 780–790. DOI: 10.1016/j.combustflame.2009.02.001.
|
[5] |
BAUWENS C R, BERGTHORSON J M, DOROFEEV S B. On the interaction of the Darrieus-Landau instability with weak initial turbulence [J]. Proceedings of the Combustion Institute, 2017, 36(2): 2815–2822. DOI: 10.1016/j.proci.2016.07.030.
|
[6] |
LAWES M, ORMSBY M P, SHEPPARD C G W, et al. The turbulent burning velocity of iso-octane/air mixtures [J]. Combustion and Flame, 2012, 159(5): 1949–1959. DOI: 10.1016/j.combustflame.2011.12.023.
|
[7] |
WANG J H, ZHANG M, XIE Y L, et al. Correlation of turbulent burning velocity for syngas/air mixtures at high pressure up to 1.0 MPa [J]. Experimental Thermal and Fluid Science, 2013, 50: 90–96. DOI: 10.1016/j.expthermflusci.2013.05.008.
|
[8] |
BREQUIGNY P, HALTER F, MOUNAÏM-ROUSSELLE C. Lewis number and Markstein length effects on turbulent expanding flames in a spherical vessel [J]. Experimental Thermal and Fluid Science, 2016, 73: 33–41. DOI: 10.1016/j.expthermflusci.2015.08.021.
|
[9] |
CHAUDHURI S, SAHA A, LAW C K. On flame-turbulence interaction in constant-pressure expanding flames [J]. Proceedings of the Combustion Institute, 2015, 35(2): 1331–1339. DOI: 10.1016/j.proci.2014.07.038.
|
[10] |
KOBAYASHI H, TAMURA T, MARUTA K, et al. Burning velocity of turbulent premixed flames in a high-pressure environment [J]. Symposium (International) on Combustion, 1996, 26(1): 389–396. DOI: 10.1016/s0082-0784(96)80240-2.
|
[11] |
KOBAYASHI H, SEYAMA K, HAGIWARA H, et al. Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature [J]. Proceedings of the Combustion Institute, 2005, 30(1): 827–834. DOI: 10.1016/j.proci.2004.08.098.
|
[12] |
CHAUDHURI S, WU F J, ZHU D L, et al. Flame speed and self-similar propagation of expanding turbulent premixed flames [J]. Physical Review Letters, 2012, 108(4): 044503. DOI: 10.1103/PhysRevLett.108.044503.
|
[13] |
LIU C C, SHY S S, PENG M W, et al. High-pressure burning velocities measurements for centrally-ignited premixed methane/air flames interacting with intense near-isotropic turbulence at constant Reynolds numbers [J]. Combustion and Flame, 2012, 159(8): 2608–2619. DOI: 10.1016/j.combustflame.2012.04.006.
|
[14] |
BRADLEY D, LAU A K C, LAWES M, et al. Flame stretch rate as a determinant of turbulent burning velocity [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1992, 338(1650): 359–387. DOI: 10.1098/rsta.1992.0012.
|
[15] |
GALMICHE B, MAZELLIER N, HALTER F, et al. Turbulence characterization of a high-pressure high-temperature fan-stirred combustion vessel using LDV, PIV and TR-PIV measurements [J]. Experiments in Fluids, 2014, 55(1): 1636. DOI: 10.1007/s00348-013-1636-x.
|
[16] |
KUMAR V. FLUENT 6.3 user’s guide [S]. New York: Fluent Inc, 2006.
|
[17] |
KIM W K, MOGI T, DOBASHI R. Flame acceleration in unconfined hydrogen/air deflagrations using infrared photography [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6): 1501–1505. DOI: 10.1016/j.jlp.2013.09.009.
|
[18] |
LI Y C, BI M S, ZHOU Y H, et al. Experimental and theoretical evaluation of hydrogen cloud explosion with built-in obstacles [J]. International Journal of Hydrogen Energy, 2020, 45(51): 28007–28018. DOI: 10.1016/j.ijhydene.2020.07.067.
|
[19] |
XIAO H H, HE X C, DUAN Q L, et al. An investigation of premixed flame propagation in a closed combustion duct with a 90° bend [J]. Applied Energy, 2014, 134: 248–256. DOI: 10.1016/j.apenergy.2014.07.071.
|
[20] |
JIANG Y T, LI Y C, ZHOU Y H, et al. Investigation on unconfined hydrogen cloud explosion with external turbulence [J]. International Journal of Hydrogen Energy, 2022, 47(13): 8658–8670. DOI: 10.1016/j.ijhydene.2021.12.167.
|
[1] | MAO Wenzhe, ZHANG Guotao, YANG Shuaishuai, XU Zihui, WANG Yan, JI Wentao. Characteristics of hydrogenated magnesium dust explosion flame propagating in a semi-enclosed space[J]. Explosion And Shock Waves, 2024, 44(6): 065401. doi: 10.11883/bzycj-2023-0363 |
[2] | ZHOU Yonghao, GAN Bo, JIANG Haipeng, HUANG Lei, GAO Wei. Investigations on the flame propagation characteristics in methane and coal dust hybrid explosions[J]. Explosion And Shock Waves, 2022, 42(1): 015402. doi: 10.11883/bzycj-2021-0064 |
[3] | LI Jingye, JIANG Xinsheng, YU Binbin, WANG Chunhui, WANG Zituo. Visualization experimental research of oil gas vapor cloud deflagration in large-scale unconfined space[J]. Explosion And Shock Waves, 2022, 42(3): 035401. doi: 10.11883/bzycj-2021-0176 |
[4] | LI Yanchao, BI Mingshu, GAO Wei. Theoretical prediction of hydrogen cloud explosion overpressure considering self-accelerating flame propagation[J]. Explosion And Shock Waves, 2021, 41(7): 072101. doi: 10.11883/bzycj-2020-0140 |
[5] | LIU Chong, DU Yang, LIANG Jianjun, ZHANG Peili, MENG Hong. Large eddy simulation of gasoline/air mixture explosion in a semi-confined space with bilateral branches[J]. Explosion And Shock Waves, 2020, 40(6): 064202. doi: 10.11883/bzycj-2019-0408 |
[6] | LI Yanchao, BI Mingshu, GAO Wei. Explosion pressure prediction considering the flame instabilities[J]. Explosion And Shock Waves, 2020, 40(1): 012101. doi: 10.11883/bzycj-2019-0004 |
[7] | YU Jianliang, JI Wentao, YAN Xingqing, YU Xiaozhe, HOU Yujie. Flame propagation characteristics of lycopodium dust explosion under explosion pressure accumulation conditions[J]. Explosion And Shock Waves, 2019, 39(2): 025401. doi: 10.11883/bzycj-2017-0436 |
[8] | SUN Song, GAO Kanghua, QIU Yanyu, WANG Mingyang. A sub-step calculation model of gas explosion venting pressure and its turbulent correction[J]. Explosion And Shock Waves, 2019, 39(5): 054203. doi: 10.11883/bzycj-2017-0399 |
[9] | REN Shaoyun. The leakage, low temperature diffusion and explosion of liquefied natural gas in open space[J]. Explosion And Shock Waves, 2018, 38(4): 891-897. doi: 10.11883/bzycj-2016-0323 |
[10] | ZHANG Hongming, CHEN Xianfeng, ZHANG Ying, NIU Yi, DAI Huaming, HUANG Chuyuan. Flame propagation velocities of cornstarch dust explosion based on RGB color model[J]. Explosion And Shock Waves, 2018, 38(1): 133-139. doi: 10.11883/bzycj-2016-0278 |
[11] | DU Yang, QI Sheng, LI Guoqing, WANG Shimao, LI Yangchao. A model of gaseous deflagration flame propagation outside the open end of a short duct[J]. Explosion And Shock Waves, 2018, 38(5): 1057-1063. doi: 10.11883/bzycj-2017-0060 |
[12] | ZHOU Ning, WAND Wenxiu, ZHANG Guowen, Zong Yongdi, ZHAO Huijun, YUAN Xiongjun. Effect of obstacles on flame acceleration of propane-air explosion[J]. Explosion And Shock Waves, 2018, 38(5): 1106-1114. doi: 10.11883/bzycj-2017-0109 |
[13] | Li Yangchao, Du Yang, Qi Sheng, Li Guoqing, Wang Shimao. Gasoline vapor/air premixed flame's unstretched laminar burning velocity[J]. Explosion And Shock Waves, 2017, 37(5): 863-870. doi: 10.11883/1001-1455(2017)05-0863-08 |
[14] | Cao Wei-guo, Xu Sen, Liang Ji-yuan, Gao Wei, Pan Feng, Rao Guo-ning. Characteristics of flame propagation during coal dust cloud explosion[J]. Explosion And Shock Waves, 2014, 34(5): 586-593. doi: 10.11883/1001-1455(2014)05-0586-08 |
[15] | Yu Jian-liang, Yan Xing-qing. Suppression of flame speed and explosion overpressure by aluminum silicate wool[J]. Explosion And Shock Waves, 2013, 33(4): 363-368. doi: 10.11883/1001-1455(2013)04-0363-06 |
[16] | CHEN Dong-liang, SUN Jin-hua, LIU Yi, MA Ye-feng, HAN Xue-bin. Propagation characteristics of premixed methane-air flames[J]. Explosion And Shock Waves, 2008, 28(5): 385-390. doi: 10.11883/1001-1455(2008)05-0385-06 |
[17] | LI Ping, DING Jue, WENG Pei-fen. A numerical simulation on liquid-gas two phase leakage dispersion by using two particle turbulent models[J]. Explosion And Shock Waves, 2005, 25(6): 541-546. doi: 10.11883/1001-1455(2005)06-0541-06 |
1. | 屈恩相,张景颢,王伟业,胡兴森,王浩宁,徐静怡,李聪. 镜像法求解SH波散射问题的应用综述. 安徽建筑. 2024(07): 115-117 . ![]() | |
2. | 屈恩相,齐辉,郭晶,杨杰,郑易. “分区”与“契合”思想求解半空间含凸起地形对SH波散射问题的研究进展. 黑龙江工业学院学报(综合版). 2022(04): 74-82 . ![]() |