Citation: | ZHAO Jiaxing, LI Qi, ZHANG Liang, LIU Songhan, JIANG Lin. Experimental study on mitigation effects of water mist on blast wave[J]. Explosion And Shock Waves, 2023, 43(10): 105401. doi: 10.11883/bzycj-2023-0108 |
[1] |
SCHUNCK T, BASTIDE M, ECKENFELS D, et al. Blast mitigation by water mist: the effect of the detonation configuration [J]. Shock Waves, 2020, 30(6): 629–644. DOI: 10.1007/s00193-020-00960-1.
|
[2] |
KONG X S, ZHOU H, ZHENG C, et al. An experimental study on the mitigation effects of fine water mist on confined-blast loading and dynamic response of steel plates [J]. International Journal of Impact Engineering, 2019, 134. DOI: 10.1016/j.ijimpeng.2019.103370.
|
[3] |
TAMBA T, SUGIYAMA Y, OHTANI K, et al. Comparison of blast mitigation performance between water layers and water droplets [J]. Shock Waves, 2021, 31(1): 89–94. DOI: 10.1007/s00193-021-00990-3.
|
[4] |
XU H B, CHEN L K, ZHANG D Z, et al. Mitigation effects on the reflected overpressure of blast shock with water surrounding an explosive in a confined space [J]. Defence Technology, 2021, 17(03): 1071–80. DOI: 10.1016/j.dt.2020.06.026.
|
[5] |
孔祥韶, 王子棠, 况正, 等. 密闭空间内爆炸载荷抑制效应实验研究 [J]. 爆炸与冲击, 2021, 41(16): 062901. DOI: 10.11883/bzycj-2020-0193.
KONG X S, WANG Z T, KUANG Z, et al. Experimental study on the mitigation effects of confined-blast loading [J]. Explosion and Shock Waves, 2021,41(16): 062901. DOI: 10.11883/bzycj-2020-0193.
|
[6] |
JIBA Z, SONO T J, MOSTERT F J. Implications of fine water mist environment on the post-detonation processes of a PE4 explosive charge in a semi-confined blast chamber [J]. Defence Technology, 2018, 14(5): 366–372. DOI: 10.1016/j.dt.2018.05.005.
|
[7] |
PONTALIER Q, LOISEAU J, GOROSHIN S, et al. Experimental investigation of blast mitigation and particle–blast interaction during the explosive dispersal of particles and liquids [J]. Shock Waves, 2018, 28(3): 489−511. DOI: 10.1007/s00193-018-0821-5.
|
[8] |
徐海斌, 张德志, 秦学军, 等. 炸药周围水层对空气冲击波反射超压影响的实验研究 [J]. 兵工学报, 2014, 35(7): 1027–1031. DOI: 10.3969/j.issn.1000-1093.2014.07.014.
XU H B, ZHANG D Z, QIN X J, et al. An investigation on mitigation effect of water surrounding an explosive on reflected overpressure of shock wave. [J]. Acta Armamentarii, 2014, 35(7): 1027–1031. DOI: 10.3969/j.issn.1000-1093.2014.07.014.
|
[9] |
LI C, ZHANG L, FANG Q, et al. Performance based investigation on the construction of anti-blast water wall [J]. International Journal of Impact Engineering, 2015, 81: 17–33. DOI: 10.1016/j.ijimpeng.2015.03.003.
|
[10] |
JEON H, ELIASSON V. Shock wave interactions with liquid sheets [J]. Experiments in Fluids, 2017, 58(4): 24. DOI: 10.1007/s00348-017-2300-7.
|
[11] |
BAILEY J L, FARLEY J P, WILLIAMS F W, et al. Blast mitigation using water mist: NRL/MR/6410-06-8976 [R]. USA: Naval Research Laboratory, 2006.
|
[12] |
WILLAUER H D, ANANTH R. , FARLEY J P, et al. Blast mitigation using water mist test series II: NRL/MR/6180-09-9182 [R]. USA: Naval Research Laboratory, 2009.
|
[13] |
叶经方, 董刚, 解立峰. 管道内水雾对冲击波衰减作用的实验研究 [J]. 爆破器材, 2006, 35(5): 1-4.
YE J F, DONG G, XIE L F, Experimental investigation of shock wave decay by water mist in duct [J]. Explosive Materials, 2006, 35(5): 1-4.
|
[14] |
陈鹏宇, 侯海量, 刘贵兵, 等. 水雾对舱内装药爆炸载荷的耗散效能试验研究 [J]. 兵工学报, 2018, 39(9): 927–933. DOI: 10.3969/j.issn.1000-1093.2018.05.012.
CHEN P Y, HOU H L, LIU G B, et al. Experimental investigation on mitigating effect of water mist on the explosive shock wave inside cabin [J]. Acta Armamentarii, 2018, 39(9): 927–33. DOI: 10.3969/j.issn.1000-1093.2018.05.012.
|
[15] |
张晓忠, 孔福利, 王启睿, 等. 内爆炸情况下通道中水雾对冲击波的衰减效应研究 [J]. 防护工程, 2011(1): 6–10.
ZHANG X Z, KONG F L, WANG Q R, et al. Study on shock wave attenuation effects of water fog in channel under internal detonation [J]. Protective Engineering, 2011(1): 6–10.
|
[16] |
ANANTH R, WILLAUER H D, FARLEY J P, et al. Effects of fine water mist on a confined blast [J]. Fire Technology, 2012, 48(3): 641–675. DOI: 10.1007/s10694-010-0156-y.
|
[17] |
SUGIYAMA Y, SHIBUE K, MATSUO A. The blast mitigation mechanism of a single water droplet layer and improvement of the blast mitigation effect using multilayers in a confined geometry [J]. International Journal of Multiphase Flow, 2023, 159: 104322. DOI: 10.1016/j.ijmultiphaseflow.2022.104322.
|
[18] |
JOURDAN G, BIAMINO L, MARIANI C, et al. Attenuation of a shock wave passing through a cloud of water droplets [J]. Shock Waves, 2010, 20(4): 285–296. DOI: 10.1007/s00193-010-0251-5.
|
[19] |
CHAUVIN A, JOURDAN G, DANIEL E, et al. Experimental investigation of the propagation of a planar shock wave through a two-phase gas-liquid medium [J]. Physics of Fluids, 2011, 23(11): 113301. DOI: 10.1063/1.3657083.
|
[20] |
SHARMA S, PRATAP S A, SRINIVAS R S. , et al. Shock induced aerobreakup of a droplet [J]. Journal of Fluid Mechanics, 2021, 929. DOI: 10.1017/jfm.2021.860.
|
[21] |
LING Y, WAGNER J L, BERESH S J, et al. Interaction of a planar shock wave with a dense particle curtain: Modeling and experiments [J]. Physics of Fluids, 2012, 24(11): 113301. DOI: 10.1063/1.4768815.
|
[22] |
SUGIYAMA Y, ANDO H, SHIMURA K, et al. Numerical investigation of the interaction between a shock wave and a particle cloud curtain using a CFD-DEM model [J]. Shock Waves, 2019, 29(4): 499–510. DOI: 10.1007/s00193-018-0878-1.
|
[23] |
王超, 吴宇, 施红辉, 等. 液滴在激波冲击下的破裂过程 [J]. 爆炸与冲击, 2016, 36(1): 129–134. DOI: 10.11883/1001-1455(2016)01-0129-06.
WANG C, WU Y, SHI H H, et al. Breakup process of a droplet under the impact of a shock wave [J]. Explosion and Shock Waves, 2016, 36(01): 129–134. DOI: 10.11883/1001-1455(2016)01-0129-06.
|
[24] |
GUILDENBECHER D R, LóPEZ-RIVERA C, SOJKA P E. Secondary atomization [J]. Experiments in Fluids, 2009, 46(3): 371−402. DOI: 10.1007/s00348-008-0593-2.
|
[25] |
POPLAVSKI S V, MINAKOV A V, SHEBELEVA A A, et al. On the interaction of water droplet with a shock wave: Experiment and numerical simulation [J]. International Journal of Multiphase Flow, 2020, 127: 103273. DOI: 10.1016/j.ijmultiphaseflow.2020.103273.
|
[26] |
ZHANG A M, LI S M, CUI P, et al. A unified theory for bubble dynamics [J]. Physics of Fluids, 2023, 35(3): 033323. DOI: 10.1063/5.0145415.
|
[27] |
CHAUVIN A, DANIEL E, CHINNAYYA A, et al. Shock waves in sprays: numerical study of secondary atomization and experimental comparison [J]. Shock Waves, 2016, 26(4): 403-415. DOI: 10.1007/s00193-015-0593-0.
|
[28] |
SHIBUE K, SUGIYAMA Y, MATSUO A. Numerical study of the effect on blast-wave mitigation of the quasi-steady drag force from a layer of water droplets sprayed into a confined geometry [J]. Process Safety and Environmental Protection, 2022, 160: 491–501. DOI: 10.1016/j.psep.2022.02.038.
|
[29] |
SUGIYAMA Y, TAMBA T, OHTANI K. Numerical study on a blast mitigation mechanism by a water droplet layer: Validation with experimental results, and the effect of the layer radius [J]. Physics of Fluids, 2022, 34(7): 076104. DOI: 10.1063/5.0091959.
|