Citation: | ZHOU Xuan, XU Lizhi, REN Wenke, GAO Guangfa. Dynamic tensile mechanical properties and constitutive equation of Kevlar29 yarn[J]. Explosion And Shock Waves, 2024, 44(1): 013101. doi: 10.11883/bzycj-2023-0119 |
[1] |
WANG H X, HAZELL P J, SHANKAR K, et al. Tensile properties of ultra-high-molecular-weight polyethylene single yarns at different strain rates [J]. Journal of Composite Materials, 2020, 54(11): 1453–1466. DOI: 10.1177/0021998319883416.
|
[2] |
WANG Y, XIA Y M. Experimental and theoretical study on the strain rate and temperature dependence of mechanical behaviour of Kevlar fibre [J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(11): 1251–1257. DOI: 10.1016/S1359-835X(99)00035-4.
|
[3] |
RUSSELL B P, KARTHIKEYAN K, DESHPANDE V S, et al. The high strain rate response of ultra high molecular-weight polyethylene: from fibre to laminate [J]. International Journal of Impact Engineering, 2013, 60: 1–9. DOI: 10.1016/j.ijimpeng.2013.03.010.
|
[4] |
ZHOU Y X, WANG Y, XIA Y M, et al. Tensile behavior of carbon fiber bundles at different strain rates [J]. Materials Letters, 2010, 64(3): 246–248. DOI: 10.1016/j.matlet.2009.10.045.
|
[5] |
DOORAKI B F, NEMES J A, BOLDUC M. Study of parameters affecting the strength of yarns [J]. Journal de Physique Ⅳ (Proceedings), 2006, 134: 1183–1188. DOI: 10.1051/jp4:2006134180.
|
[6] |
ZHU D, MOBASHER B, ERNI J, et al. Strain rate and gage length effects on tensile behavior of Kevlar 49 single yarn [J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(11): 2021–2029. DOI: 10.1016/j.compositesa.2012.06.007.
|
[7] |
陈思颖, 黄晨光, 段祝平. 几种高性能纤维束的冲击动力学性能实验研究 [J]. 爆炸与冲击, 2003, 23(4): 355–359.
CHEN S Y, HUANG C G, DUAN Z P. Experimental study on the dynamic properties of high strength fiber clusters [J]. Explosion and Shock Waves, 2003, 23(4): 355–359.
|
[8] |
朱德举, 欧云福, 张晓彤, 等. Kevlar® 29纤维多尺度力学行为的试验研究和有限元模拟 [J]. 工程力学, 2016, 33(9): 242–249, 256. DOI: 10.6052/j.issn.1000-4750.2015.02.0123.
ZHU D J, OU Y F, ZHANG X T, et al. Experimental study and finite element modeling of the multi-scale mechanical behavior of Kevlar® 29 fibers [J]. Engineering Mechanics, 2016, 33(9): 242–249, 256. DOI: 10.6052/j.issn.1000-4750.2015.02.0123.
|
[9] |
TAPIE E, SHIM V P W, GUO Y B. Influence of weaving on the mechanical response of aramid yarns subjected to high-speed loading [J]. International Journal of Impact Engineering, 2015, 80: 1–12. DOI: 10.1016/j.ijimpeng.2014.12.010.
|
[10] |
NILAKANTAN G, KEEFE M, BOGETTI T A, et al. Multiscale modeling of the impact of textile fabrics based on hybrid element analysis [J]. International Journal of Impact Engineering, 2010, 37(10): 1056–1071. DOI: 10.1016/j.ijimpeng.2010.04.007.
|
[11] |
YANG Y F, LIU Y C, XUE S N, et al. Multi-scale finite element modeling of ballistic impact onto woven fabric involving fiber bundles [J]. Composite Structures, 2021, 267: 113856. DOI: 10.1016/j.compstruct.2021.113856.
|
[12] |
ZHOU Y, YAO W T, ZHANG Z W, et al. The effect of cumulative damage on the ballistic performance of plain weaves [J]. Composite Structures, 2022, 297: 115978. DOI: 10.1016/j.compstruct.2022.115978.
|
[13] |
NILAKANTAN G. Filament-level modeling of Kevlar KM2 yarns for ballistic impact studies [J]. Composite Structures, 2013, 104: 1–13. DOI: 10.1016/j.compstruct.2013.04.001.
|
[14] |
HA-MINH C, IMAD A, KANIT T, et al. Numerical analysis of a ballistic impact on textile fabric [J]. International Journal of Mechanical Sciences, 2013, 69: 32–39. DOI: 10.1016/j.ijmecsci.2013.01.014.
|
[15] |
ROYLANCE D. Wave propagation in a viscoelastic fiber subjected to transverse impact [J]. Journal of Applied Mechanics, 1973, 40(1): 143–148. DOI: 10.1115/1.3422914.
|
[16] |
TAYLOR W J, VINSON J R. Modeling ballistic impact into flexible materials [J]. AIAA Journal, 1990, 28(12): 2098–2103. DOI: 10.2514/3.10527.
|
[17] |
SHIM V P W, TAN V B C, TAY T E. Modelling deformation and damage characteristics of woven fabric under small projectile impact [J]. International Journal of Impact Engineering, 1995, 16(4): 585–605. DOI: 10.1016/0734-743X(94)00063-3.
|
[18] |
KOH A C P, SHIM V P W, TAN V B C. Dynamic behaviour of UHMWPE yarns and addressing impedance mismatch effects of specimen clamps [J]. International Journal of Impact Engineering, 2010, 37(3): 324–332. DOI: 10.1016/j.ijimpeng.2009.10.008.
|
[19] |
GUO Y B, SHIM V P W, TAN B W F. Dynamic tensile properties of magnesium nanocomposite [J]. Materials Science Forum, 2012, 706: 780–785. DOI: 10.4028/www.scientific.net/MSF.706-709.780.
|
[1] | KANG Haobo, JIANG Jianwei, PENG Jiacheng, LI Mei. Simulation analysis on the initiation mechanism of the explosive charge covered with a thick shell impacted by a rod projectile[J]. Explosion And Shock Waves, 2022, 42(1): 013303. doi: 10.11883/bzycj-2021-0111 |
[2] | WU Junying, LI Yaojiang, YANG Lijun, LIU Jiaxi, WU Jiaojiao, ZHANG Xiaozhou, CHEN Lang. Shock initiation characteristics of four-component HTPB solid propellant containing RDX[J]. Explosion And Shock Waves, 2021, 41(8): 082301. doi: 10.11883/bzycj-2020-0350 |
[3] | PANG Songlin, CHEN Xiong, XU Jinsheng, WANG Yongping. Impact initiation of a solid-rocket engine by a shaped-charge jet[J]. Explosion And Shock Waves, 2020, 40(8): 082101. doi: 10.11883/bzycj-2019-0469 |
[4] | GUO Chun, GUO Shangsheng, QIAN Jianping, GU Wenbin. Numerical simulation on shock critical initiation velocity of cylindrical covered charge by multiple fragment impacts[J]. Explosion And Shock Waves, 2020, 40(6): 062301. doi: 10.11883/bzycj-2019-0391 |
[5] | WANG Xin, JIANG Jianwei, WANG Shuyou, MEN Jianbing. Critical detonation velocity calculation model of cylindrical covered charge impacted by fragment[J]. Explosion And Shock Waves, 2019, 39(1): 012302. doi: 10.11883/bzycj-2017-0271 |
[6] | BAI Zhiling, DUAN Zhuoping, WEN Lijing, ZHANG Zhenyu, OU Zhuocheng, HUANG Fenglei. A multi-component Duan-Zhang-Kim mesoscopic reaction rate model for shock initiation of multi-component PBX explosives[J]. Explosion And Shock Waves, 2019, 39(11): 112101. doi: 10.11883/bzycj-2018-0410 |
[7] | LIU Haiqing, DUAN Zhuoping, BAI Zhiling, WEN Lijing, OU Zhuocheng, HUANG Fenglei. Experimental research on effects of porosity on shock initiation of PBX explosive[J]. Explosion And Shock Waves, 2019, 39(7): 072302. doi: 10.11883/bzycj-2018-0226 |
[8] | ZHANG Tao, LIU Yusheng, GAO Zhipeng, YANG Jia, LIU Yi, GU Yan. Numerical simulation of the interlayer effects for fragments impacting steel-covered charge[J]. Explosion And Shock Waves, 2018, 38(6): 1241-1246. doi: 10.11883/bzycj-2017-0154 |
[9] | CHU Wenhua, ZHU Dongjun, LIANG Deli, FENG Feng, WEI Sijun. Dynamic characteristics of three-dimensional complex structure based on coupling algorithm[J]. Explosion And Shock Waves, 2018, 38(4): 725-734. doi: 10.11883/bzycj-2016-0283 |
[10] | Pi Zhengdi, Chen Lang, Liu Danyang, Wu Junying. Shock initiation of CL-20 based explosives[J]. Explosion And Shock Waves, 2017, 37(6): 915-923. doi: 10.11883/1001-1455(2017)06-0915-09 |
[11] | Chen Shao-jie, Wu Li-zhi, Shen Rui-qi, Ye Ying-hua, Hu Yan. Initiation of HNS-Ⅳ using a laser-driven multi-layer flyer[J]. Explosion And Shock Waves, 2015, 35(2): 285-288. doi: 10.11883/1001-1455-(2015)02-0285-04 |
[12] | Jiang Xi-bo, Rao Guo-ning, Xu Sen, Yao Miao, Ma An-peng, Peng Jin-hua. Shock initiation characteristics of expired single-base propellants[J]. Explosion And Shock Waves, 2014, 34(1): 99-105. doi: 10.11883/1001-1455(2014)01-0099-07 |
[13] | Chen Lang, Liu Qun, Wy Jun-ying. On shock initiation of heated explosives[J]. Explosion And Shock Waves, 2013, 33(1): 21-28. doi: 10.11883/1001-1455(2013)01-0021-08 |
[14] | TAO Wei-jun, HUAN Shi, HUANG Feng-lei, JIANG Guo-ping. Lateralrarefactionwaveeffectsonshockinitiation ofheterogeneouscondensedexplosives[J]. Explosion And Shock Waves, 2011, 31(4): 397-401. doi: 10.11883/1001-1455(2011)04-0397-05 |
[15] | ZHANG Zhong, CHEN Wei-dong, YANG Wen-miao. Thematerialpointmethodforshock-to-detonationtransitionof heterogeneoussolidexplosive[J]. Explosion And Shock Waves, 2011, 31(1): 25-30. doi: 10.11883/1001-1455(2011)01-0025-06 |
[16] | LIANG Zeng-you, HUANG Feng-lei, ZHANG Zhen-yu. Study on new reaction rate function model of PBX-9404 for damaged explosive initiation behaviour[J]. Explosion And Shock Waves, 2008, 28(1): 38-41. doi: 1.011883/1001-1455(2008)01-0038-06 |
[17] | WANG Gui-ji, ZHAO Tong-hu, MO Jian-jun, WU Gang, HAN Mei, TAN Fu-li. Short-duration pulse shock initiation characteristics of a TATB/HMX-based polymer bonded explosive[J]. Explosion And Shock Waves, 2007, 27(3): 230-235. doi: 10.11883/1001-1455(2007)03-0230-06 |
[18] | WANG Ji, WANG Xiao-jun, BIAN Liang. Linking of smoothed particle hydrodynamics method to standard finite element method and its application in impact dynamics[J]. Explosion And Shock Waves, 2007, 27(6): 522-528. doi: 10.11883/1001-1455(2007)06-0522-07 |
[19] | PAN Hao, HU Xiao-mian. Numerical simulation for overdriven and shocking-to-detonation transition of insensitive high explosives[J]. Explosion And Shock Waves, 2006, 26(2): 174-178. doi: 10.11883/1001-1455(2006)02-0174-05 |
[20] | LI Zhi-peng, LONG Xin-ping, HUANG Yi-min, HE Bi, WANG Rong, HE Song-wei. Electromagnetic gauge measurements of shock initiating JOB-9003 explosive[J]. Explosion And Shock Waves, 2006, 26(3): 269-272. doi: 10.11883/1001-1455(2006)03-0269-04 |