Citation: | WU Yiding, WANG Xiaodong, YU Yilei, MA Minghui, LU Wencheng, GAO Guangfa. Affection of fiber backboard structure on the penetration and crushing resistance of B4C ceramic composite armor[J]. Explosion And Shock Waves, 2023, 43(9): 091411. doi: 10.11883/bzycj-2023-0133 |
[1] |
LEE M, YOO Y H. Analysis of ceramic/metal armour systems [J]. International Journal of Impact Engineering, 2001, 25(9): 819–829. DOI: 10.1016/S0734-743X(01)00025-2.
|
[2] |
SHOKRIEH M M, JAVADPOUR G H. Penetration analysis of a projectile in ceramic composite armor [J]. Composite Structures, 2008, 82(2): 269–276. DOI: 10.1016/j.compstruct.2007.01.023.
|
[3] |
LIU W L, CHEN Z F, CHENG X W, et al. Design and ballistic penetration of the ceramic composite armor [J]. Composites Part B: Engineering, 2016, 84: 33–40. DOI: 10.1016/j.compositesb.2015.08.071.
|
[4] |
SADANANDAN S, HETHERINGTON J G. Characterisation of ceramic/steel and ceramic/aluminium armours subjected to oblique impact [J]. International Journal of Impact Engineering, 1997, 19(9/10): 811–819. DOI: 10.1016/S0734-743X(97)00019-5.
|
[5] |
HU D A, ZHANG Y M, SHEN Z W, et al. Investigation on the ballistic behavior of mosaic SiC/UHMWPE composite armor systems [J]. Ceramics International, 2017, 43(13): 10368–10376. DOI: 10.1016/j.ceramint.2017.05.071.
|
[6] |
CHEN Z Y, XU Y Q, LI M L, et al. Investigation on residual strength and failure mechanism of the ceramic/UHMWPE armors after ballistic tests [J]. Materials, 2022, 15(3): 901. DOI: 10.3390/ma15030901.
|
[7] |
CROUCH I G, APPLEBY-THOMAS G, HAZELL P J. A study of the penetration behaviour of mild-steel-cored ammunition against boron carbide ceramic armours [J]. International Journal of Impact Engineering, 2015, 80: 203–211. DOI: 10.1016/j.ijimpeng.2015.03.002.
|
[8] |
LIU W L, CHEN Z H, CHEN Z F, et al. Influence of different back laminate layers on ballistic performance of ceramic composite armor [J]. Materials & Design, 2015, 87: 421–427. DOI: 10.1016/j.matdes.2015.08.024.
|
[9] |
WANG Q, CHEN Z H, CHEN Z F. Design and characteristics of hybrid composite armor subjected to projectile impact [J]. Materials & Design, 2013, 46: 634−639. DOI: 10.1016/j.matdes.2012.10.052.
|
[10] |
FEJDYŚ M, KOŚLA K, KUCHARSKA-JASTRZĄBEK A, et al. Hybride composite armour systems with advanced ceramics and ultra-high molecular weight polyethylene (UHMWPE) fibres [J]. Fibres & Textiles in Eastern Europe, 2016, 24(3): 79–89. DOI: 10.5604/12303666.1196616.
|
[11] |
RAHBEK D B, JOHNSEN B B. Fragmentation of an armour piercing projectile after impact on composite covered alumina tiles [J]. International Journal of Impact Engineering, 2019, 133: 103332. DOI: 10.1016/j.ijimpeng.2019.103332.
|
[12] |
ALMALKI S J, NADARAJAH S. Modifications of the Weibull distribution: a review [J]. Reliability Engineering & System Safety, 2014, 124: 32–55. DOI: 10.1016/j.ress.2013.11.010.
|
[13] |
STRØMSØE E, INGEBRIGTSEN K O. A modification of the Mott formula for prediction of the fragment size distribution [J]. Propellants, Explosives, Pyrotechnics, 1987, 12(5): 175–178. DOI: 10.1002/prep.19870120508.
|
[14] |
JIUSTI J, KAMMER E H, NECKEL L, et al. Ballistic performance of Al2O3 mosaic armors with gap-filling materials [J]. Ceramics International, 2017, 43(2): 2697–2704. DOI: 10.1016/j.ceramint.2016.11.087.
|
[15] |
MIRKHALAF M, SUNESARA A, ASHRAFI B, et al. Toughness by segmentation: fabrication, testing and micromechanics of architectured ceramic panels for impact applications [J]. International Journal of Solids and Structures, 2019, 158: 52–65. DOI: 10.1016/j.ijsolstr.2018.08.025.
|
[16] |
GRUJICIC M, SNIPES J, RAMASWAMI S. Ballistic-penetration resistance and flexural-stiffness optimization of a nacre-mimetic, B4C-reinforced, polyurea-matrix composite armor [J]. International Journal of Structural Integrity, 2017, 8(3): 341–372. DOI: 10.1108/IJSI-07-2016-0026.
|
[17] |
余毅磊, 蒋招绣, 王晓东, 等. 背板对氧化铝陶瓷薄板断裂锥形态的影响 [J]. 北京理工大学学报, 2021, 41(7): 713–720. DOI: 10.15918/j.tbit1001-0645.2020.107.
YU Y L, JIANG Z X, WANG X D, et al. Effect of backing plate condition on fracture cone shape of alumina ceramic thin tiles [J]. Transactions of Beijing Institute of Technology, 2021, 41(7): 713–720. DOI: 10.15918/j.tbit1001-0645.2020.107.
|
[18] |
ZHANG Y J, CUI B, DONG H, et al. Analysis of the influence of different constraints on the ballistic performance of B4C/C/UHMWPE composite armor [J]. Ceramics International, 2022, 48(18): 26758–26771. DOI: 10.1016/j.ceramint.2022.05.374.
|
[19] |
ZHANG R, HAN B, ZHOU Y, et al. Mechanism-driven analytical modelling of UHMWPE laminates under ballistic impact [J]. International Journal of Mechanical Sciences, 2023, 245: 108132. DOI: 10.1016/j.ijmecsci.2023.108132.
|
[20] |
ZHANG Y J, DONG H, LIANG K, et al. Impact simulation and ballistic analysis of B4C composite armour based on target plate tests [J]. Ceramics International, 2021, 47(7): 10035–10049. DOI: 10.1016/j.ceramint.2020.12.150.
|
[21] |
RAHBEK D B, SIMONS J W, JOHNSEN B B, et al. Effect of composite covering on ballistic fracture damage development in ceramic plates [J]. International Journal of Impact Engineering, 2017, 99: 58–68. DOI: 10.1016/j.ijimpeng.2016.09.010.
|
[22] |
MOTT N F. Fragmentation of shell cases [J]. Proceedings of Royal Society A: Mathematical, Physical and Engineering Sciences, 1947, 189(1018): 300–308. DOI: 10.1098/rspa.1947.0042.
|
[23] |
王晓东, 余毅磊, 蒋招绣, 等. 不同撞击速度下穿燃弹侵彻陶瓷/铝合金复合靶板时弹芯破碎失效特性研究 [J]. 爆炸与冲击, 2022, 42(2): 023303. DOI: 10.11883/bzycj-2021-0181.
WANG X D, YU Y L, JIANG Z X, et al. Dynamic fragmentation and failure of the hard core of a 12.7 mm API projectile against SiC/6061T6Al composite armor with various impact velocities [J]. Explosion and Shock Waves, 2022, 42(2): 023303. DOI: 10.11883/bzycj-2021-0181.
|
[24] |
KIPP M E, GRADY D E. Dynamic fracture growth and interaction in one dimension [J]. Journal of the Mechanics and Physics of Solids, 1985, 33(4): 399–415. DOI: 10.1016/0022-5096(85)90036-5.
|
[25] |
YADAV S, RAVICHANDRAN G. Penetration resistance of laminated ceramic/polymer structures [J]. International Journal of Impact Engineering, 2003, 28(5): 557–574. DOI: 10.1016/S0734-743X(02)00122-7.
|
[26] |
BAO J W, WANG Y W, AN R, et al. Investigation of the mechanical and ballistic properties of hybrid carbon/aramid woven laminates [J]. Defence Technology, 2022, 18(10): 1822–1833. DOI: 10.1016/j.dt.2021.09.009.
|
[27] |
赵国志. 穿甲工程力学 [M]. 北京: 兵器工业出版社, 1992.
|
[28] |
余毅磊, 王晓东, 任文科, 等. 陶瓷/金属复合靶受12.7 mm穿甲燃烧弹侵彻时弹靶破碎特征 [J]. 兵工学报, 2022, 43(9): 2307–2317. DOI: 10.12382/bgxb.2021.0497.
YU Y L, WANG X D, REN W K, et al. Fragmentation characteristics of 12.7 mm armor-piercing incendiary projectile and ceramic/metal composite target during penetration [J]. Acta Armamentarii, 2022, 43(9): 2307–2317. DOI: 10.12382/bgxb.2021.0497.
|
[29] |
KARTHIKEYAN K, RUSSELL B P, FLECK N A, et al. The effect of shear strength on the ballistic response of laminated composite plates [J]. European Journal of Mechanics-A/Solids, 2013, 42: 35–53. DOI: 10.1016/j.euromechsol.2013.04.002.
|
[30] |
LIANG L, LIN Y Y, HUANG Y X, et al. Broadband stealth composite metastructure with high penetration protection [J]. Composites Part A: Applied Science and Manufacturing, 2022, 160: 107069. DOI: 10.1016/j.compositesa.2022.107069.
|
[31] |
WANG X D, YU Y L, ZHONG K, et al. Effects of impact velocity on the dynamic fragmentation of rigid-brittle projectiles and ceramic composite armors [J]. Latin American Journal of Solids and Structures, 2021, 18(8): e410. DOI: 10.1590/1679-78256701.
|
[32] |
ATTWOOD J P, RUSSELL B P, WADLEY H N G, et al. Mechanisms of the penetration of ultra-high molecular weight polyethylene composite beams [J]. International Journal of Impact Engineering, 2016, 93: 153–165. DOI: 10.1016/j.ijimpeng.2016.02.010.
|
[33] |
余毅磊, 王晓东, 任文科, 等. UHMWPE背板铺层角度对陶瓷复合靶板抗弹性的影响 [J]. 北京理工大学学报, 2022, 42(6): 612–619. DOI: 10.15918/j.tbit1001-0645.2021.209.
YU Y L, WANG X D, REN W K, et al. Effect of UHMWPE back plate layering angle on the anti-elasticity of ceramic composite target plate [J]. Transactions of Beijing Institute of Technology, 2022, 42(6): 612–619. DOI: 10.15918/j.tbit1001-0645.2021.209.
|