Volume 43 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
WU Yiding, WANG Xiaodong, YU Yilei, MA Minghui, LU Wencheng, GAO Guangfa. Affection of fiber backboard structure on the penetration and crushing resistance of B4C ceramic composite armor[J]. Explosion And Shock Waves, 2023, 43(9): 091411. doi: 10.11883/bzycj-2023-0133
Citation: WU Yiding, WANG Xiaodong, YU Yilei, MA Minghui, LU Wencheng, GAO Guangfa. Affection of fiber backboard structure on the penetration and crushing resistance of B4C ceramic composite armor[J]. Explosion And Shock Waves, 2023, 43(9): 091411. doi: 10.11883/bzycj-2023-0133

Affection of fiber backboard structure on the penetration and crushing resistance of B4C ceramic composite armor

doi: 10.11883/bzycj-2023-0133
  • Received Date: 2023-04-12
  • Rev Recd Date: 2023-06-20
  • Available Online: 2023-07-21
  • Publish Date: 2023-09-11
  • Lightweight ceramic composite armor is widely used for its lightweight and high bullet-resistant performance. To improve the bullet-resistant performance of ceramic composite armor, research has been conducted on the lightweight and performance improvement of different backing plates. The optimization of the structural design of lightweight ceramic composite armor is of great significance. Taking boron carbide ceramic as the front bullet-resistant panel, and different combinations of carbon fiber T300, UHMWPE, and Kevlar high-performance fiber boards as its composite backing plates. Using a 12.7 mm armor-piercing incendiary bullet to conduct ballistic impact experiments on ceramic/composite backing plates of different structures, the distribution law of fragment blocks and bullet-resistant performance of ceramic composite armor corresponding to different backing plates were analyzed by recovering shattered bullets and ceramic fragments and performing multi-stage screening and weighing. The study shows that adding a layer of carbon fiber board between the ceramic and fiber backing plates can significantly improve the bullet-resistant stiffness gradient of the composite armor, increase the structural stiffness of the entire bullet-resistant target board, and improve the stress wave propagation form between the bullet and the entire panel, prolonging the time and the effect of the stress wave propagation inside the entire ceramic panel after the formation of the ceramic cone and detachment from the ceramic panel, thereby reducing the tensile fracture caused by tensile waves inside the ceramic panel and prolonging the phenomenon of bullet retention. The Rosin-Rammler distribution model was used to characterize the fragment forms of ceramics and bullets. The results show that replacing half-thickness UHMWPE fiber board and Kevlar fiber board with carbon fiber backing plate respectively increased the half-cone angle of the ceramic panel by 2.05% and 4.20%, and the overall average characteristic size of the fragmentation zone decreased by 16.92% and 42.96% respectively. After adding a carbon fiber with high bending strength as the intermediate transition layer of the composite armor board, the failure mode of the backing plate changed, fully utilizing the high tensile strength of the fiber backing plate, thereby improving the overall bullet-resistant performance of the composite armor.
  • loading
  • [1]
    LEE M, YOO Y H. Analysis of ceramic/metal armour systems [J]. International Journal of Impact Engineering, 2001, 25(9): 819–829. DOI: 10.1016/S0734-743X(01)00025-2.
    [2]
    SHOKRIEH M M, JAVADPOUR G H. Penetration analysis of a projectile in ceramic composite armor [J]. Composite Structures, 2008, 82(2): 269–276. DOI: 10.1016/j.compstruct.2007.01.023.
    [3]
    LIU W L, CHEN Z F, CHENG X W, et al. Design and ballistic penetration of the ceramic composite armor [J]. Composites Part B: Engineering, 2016, 84: 33–40. DOI: 10.1016/j.compositesb.2015.08.071.
    [4]
    SADANANDAN S, HETHERINGTON J G. Characterisation of ceramic/steel and ceramic/aluminium armours subjected to oblique impact [J]. International Journal of Impact Engineering, 1997, 19(9/10): 811–819. DOI: 10.1016/S0734-743X(97)00019-5.
    [5]
    HU D A, ZHANG Y M, SHEN Z W, et al. Investigation on the ballistic behavior of mosaic SiC/UHMWPE composite armor systems [J]. Ceramics International, 2017, 43(13): 10368–10376. DOI: 10.1016/j.ceramint.2017.05.071.
    [6]
    CHEN Z Y, XU Y Q, LI M L, et al. Investigation on residual strength and failure mechanism of the ceramic/UHMWPE armors after ballistic tests [J]. Materials, 2022, 15(3): 901. DOI: 10.3390/ma15030901.
    [7]
    CROUCH I G, APPLEBY-THOMAS G, HAZELL P J. A study of the penetration behaviour of mild-steel-cored ammunition against boron carbide ceramic armours [J]. International Journal of Impact Engineering, 2015, 80: 203–211. DOI: 10.1016/j.ijimpeng.2015.03.002.
    [8]
    LIU W L, CHEN Z H, CHEN Z F, et al. Influence of different back laminate layers on ballistic performance of ceramic composite armor [J]. Materials & Design, 2015, 87: 421–427. DOI: 10.1016/j.matdes.2015.08.024.
    [9]
    WANG Q, CHEN Z H, CHEN Z F. Design and characteristics of hybrid composite armor subjected to projectile impact [J]. Materials & Design, 2013, 46: 634−639. DOI: 10.1016/j.matdes.2012.10.052.
    [10]
    FEJDYŚ M, KOŚLA K, KUCHARSKA-JASTRZĄBEK A, et al. Hybride composite armour systems with advanced ceramics and ultra-high molecular weight polyethylene (UHMWPE) fibres [J]. Fibres & Textiles in Eastern Europe, 2016, 24(3): 79–89. DOI: 10.5604/12303666.1196616.
    [11]
    RAHBEK D B, JOHNSEN B B. Fragmentation of an armour piercing projectile after impact on composite covered alumina tiles [J]. International Journal of Impact Engineering, 2019, 133: 103332. DOI: 10.1016/j.ijimpeng.2019.103332.
    [12]
    ALMALKI S J, NADARAJAH S. Modifications of the Weibull distribution: a review [J]. Reliability Engineering & System Safety, 2014, 124: 32–55. DOI: 10.1016/j.ress.2013.11.010.
    [13]
    STRØMSØE E, INGEBRIGTSEN K O. A modification of the Mott formula for prediction of the fragment size distribution [J]. Propellants, Explosives, Pyrotechnics, 1987, 12(5): 175–178. DOI: 10.1002/prep.19870120508.
    [14]
    JIUSTI J, KAMMER E H, NECKEL L, et al. Ballistic performance of Al2O3 mosaic armors with gap-filling materials [J]. Ceramics International, 2017, 43(2): 2697–2704. DOI: 10.1016/j.ceramint.2016.11.087.
    [15]
    MIRKHALAF M, SUNESARA A, ASHRAFI B, et al. Toughness by segmentation: fabrication, testing and micromechanics of architectured ceramic panels for impact applications [J]. International Journal of Solids and Structures, 2019, 158: 52–65. DOI: 10.1016/j.ijsolstr.2018.08.025.
    [16]
    GRUJICIC M, SNIPES J, RAMASWAMI S. Ballistic-penetration resistance and flexural-stiffness optimization of a nacre-mimetic, B4C-reinforced, polyurea-matrix composite armor [J]. International Journal of Structural Integrity, 2017, 8(3): 341–372. DOI: 10.1108/IJSI-07-2016-0026.
    [17]
    余毅磊, 蒋招绣, 王晓东, 等. 背板对氧化铝陶瓷薄板断裂锥形态的影响 [J]. 北京理工大学学报, 2021, 41(7): 713–720. DOI: 10.15918/j.tbit1001-0645.2020.107.

    YU Y L, JIANG Z X, WANG X D, et al. Effect of backing plate condition on fracture cone shape of alumina ceramic thin tiles [J]. Transactions of Beijing Institute of Technology, 2021, 41(7): 713–720. DOI: 10.15918/j.tbit1001-0645.2020.107.
    [18]
    ZHANG Y J, CUI B, DONG H, et al. Analysis of the influence of different constraints on the ballistic performance of B4C/C/UHMWPE composite armor [J]. Ceramics International, 2022, 48(18): 26758–26771. DOI: 10.1016/j.ceramint.2022.05.374.
    [19]
    ZHANG R, HAN B, ZHOU Y, et al. Mechanism-driven analytical modelling of UHMWPE laminates under ballistic impact [J]. International Journal of Mechanical Sciences, 2023, 245: 108132. DOI: 10.1016/j.ijmecsci.2023.108132.
    [20]
    ZHANG Y J, DONG H, LIANG K, et al. Impact simulation and ballistic analysis of B4C composite armour based on target plate tests [J]. Ceramics International, 2021, 47(7): 10035–10049. DOI: 10.1016/j.ceramint.2020.12.150.
    [21]
    RAHBEK D B, SIMONS J W, JOHNSEN B B, et al. Effect of composite covering on ballistic fracture damage development in ceramic plates [J]. International Journal of Impact Engineering, 2017, 99: 58–68. DOI: 10.1016/j.ijimpeng.2016.09.010.
    [22]
    MOTT N F. Fragmentation of shell cases [J]. Proceedings of Royal Society A: Mathematical, Physical and Engineering Sciences, 1947, 189(1018): 300–308. DOI: 10.1098/rspa.1947.0042.
    [23]
    王晓东, 余毅磊, 蒋招绣, 等. 不同撞击速度下穿燃弹侵彻陶瓷/铝合金复合靶板时弹芯破碎失效特性研究 [J]. 爆炸与冲击, 2022, 42(2): 023303. DOI: 10.11883/bzycj-2021-0181.

    WANG X D, YU Y L, JIANG Z X, et al. Dynamic fragmentation and failure of the hard core of a 12.7 mm API projectile against SiC/6061T6Al composite armor with various impact velocities [J]. Explosion and Shock Waves, 2022, 42(2): 023303. DOI: 10.11883/bzycj-2021-0181.
    [24]
    KIPP M E, GRADY D E. Dynamic fracture growth and interaction in one dimension [J]. Journal of the Mechanics and Physics of Solids, 1985, 33(4): 399–415. DOI: 10.1016/0022-5096(85)90036-5.
    [25]
    YADAV S, RAVICHANDRAN G. Penetration resistance of laminated ceramic/polymer structures [J]. International Journal of Impact Engineering, 2003, 28(5): 557–574. DOI: 10.1016/S0734-743X(02)00122-7.
    [26]
    BAO J W, WANG Y W, AN R, et al. Investigation of the mechanical and ballistic properties of hybrid carbon/aramid woven laminates [J]. Defence Technology, 2022, 18(10): 1822–1833. DOI: 10.1016/j.dt.2021.09.009.
    [27]
    赵国志. 穿甲工程力学 [M]. 北京: 兵器工业出版社, 1992.
    [28]
    余毅磊, 王晓东, 任文科, 等. 陶瓷/金属复合靶受12.7 mm穿甲燃烧弹侵彻时弹靶破碎特征 [J]. 兵工学报, 2022, 43(9): 2307–2317. DOI: 10.12382/bgxb.2021.0497.

    YU Y L, WANG X D, REN W K, et al. Fragmentation characteristics of 12.7 mm armor-piercing incendiary projectile and ceramic/metal composite target during penetration [J]. Acta Armamentarii, 2022, 43(9): 2307–2317. DOI: 10.12382/bgxb.2021.0497.
    [29]
    KARTHIKEYAN K, RUSSELL B P, FLECK N A, et al. The effect of shear strength on the ballistic response of laminated composite plates [J]. European Journal of Mechanics-A/Solids, 2013, 42: 35–53. DOI: 10.1016/j.euromechsol.2013.04.002.
    [30]
    LIANG L, LIN Y Y, HUANG Y X, et al. Broadband stealth composite metastructure with high penetration protection [J]. Composites Part A: Applied Science and Manufacturing, 2022, 160: 107069. DOI: 10.1016/j.compositesa.2022.107069.
    [31]
    WANG X D, YU Y L, ZHONG K, et al. Effects of impact velocity on the dynamic fragmentation of rigid-brittle projectiles and ceramic composite armors [J]. Latin American Journal of Solids and Structures, 2021, 18(8): e410. DOI: 10.1590/1679-78256701.
    [32]
    ATTWOOD J P, RUSSELL B P, WADLEY H N G, et al. Mechanisms of the penetration of ultra-high molecular weight polyethylene composite beams [J]. International Journal of Impact Engineering, 2016, 93: 153–165. DOI: 10.1016/j.ijimpeng.2016.02.010.
    [33]
    余毅磊, 王晓东, 任文科, 等. UHMWPE背板铺层角度对陶瓷复合靶板抗弹性的影响 [J]. 北京理工大学学报, 2022, 42(6): 612–619. DOI: 10.15918/j.tbit1001-0645.2021.209.

    YU Y L, WANG X D, REN W K, et al. Effect of UHMWPE back plate layering angle on the anti-elasticity of ceramic composite target plate [J]. Transactions of Beijing Institute of Technology, 2022, 42(6): 612–619. DOI: 10.15918/j.tbit1001-0645.2021.209.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(5)

    Article Metrics

    Article views (378) PDF downloads(95) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return