Citation: | DENG Shuo, LAI Zhichao, QIN Jian, MENG Xiangyao, CHI Hui, HUANG Ruiyuan. Damage effects of clamped square plates by near-field underwater explosion with complex boundary conditions[J]. Explosion And Shock Waves, 2023, 43(11): 112204. doi: 10.11883/bzycj-2023-0164 |
[1] |
秦业志, 王莹, 王志凯, 等. 小当量柱型装药水下近场爆炸固支单层方形钢板毁伤特性研究 [J]. 振动与冲击, 2021, 40(7): 29–36. DOI: 10.13465/j.cnki.jvs.2021.07.004.
QIN Y Z, WANG Y, WANG Z K, et al. Damage characteristics of fixed single-layer square steel plate under near-field underwater explosion of small equivalent column charge [J]. Journal of Vibration and Shock, 2021, 40(7): 29–36. DOI: 10.13465/j.cnki.jvs.2021.07.004.
|
[2] |
张弛, 刘凯, 李海涛, 等. 水下爆炸下典型舰船结构整体损伤模式表征方法及图谱研究 [J]. 爆炸与冲击, 2022, 42(6): 065101. DOI: 10.11883/bzycj-2021-0200.
ZHANG C, LIU K, LI H T, et al. Study on the characterization method and mode map of overall damage of typical warship structures subjected to underwater explosions [J]. Explosion and Shock Waves, 2022, 42(6): 065101. DOI: 10.11883/bzycj-2021-0200.
|
[3] |
LIU L T, YAO X L, ZHANG A M, et al. Research on the estimate formulas for underwater explosion bubble jet parameters [J]. Ocean Engineering, 2018, 164: 563–576. DOI: 10.1016/j.oceaneng.2018.06.070.
|
[4] |
RAMAJEYATHILAGAM K, VENDHAN C P, RAO V B. Non-linear transient dynamic response of rectangular plates under shock loading [J]. International Journal of Impact Engineering, 2000, 24(10): 999–1015. DOI: 10.1016/S0734-743X(00)00018-X.
|
[5] |
代利辉, 吴成, 安丰江. 水下爆炸载荷下固支方板的动态毁伤模式 [J]. 兵工学报, 2020, 41(S2): 111–119. DOI: 10.3969/j.issn.1000-1093.2020.S2.015.
DAI L H, WU C, AN F J. Dynamic damage mode of clamped square plates subjected to underwater explosive loading [J]. Acta Armamentarii, 2020, 41(S2): 111–119. DOI: 10.3969/j.issn.1000-1093.2020.S2.015.
|
[6] |
汪俊, 孟利平, 伍星星, 等. 水面浮体结构底部水下爆炸射流试验研究 [J]. 船舶力学, 2022, 26(9): 13. DOI: 10.3969/j.issn.1007-7294.2022.09.014.
WANG J, MENG L P, WU X X, et al. Experimental investigation on water-jets resulting from bubble collapse of underwater explosion under surface floating structures [J]. Journal of Ship Mechanics, 2022, 26(9): 13. DOI: 10.3969/j.issn.1007-7294.2022.09.014.
|
[7] |
LI H T, ZHENG X Y, ZHANG C, et al. Sagging damage characteristics of hull girder with trapezoidal cross-section subjected to near-field underwater explosion [J]. Defence Technology, 2021, 21: 1–13. DOI: 10.1016/j.dt.2021.10.004.
|
[8] |
赖志超, 邓硕, 秦健, 等. 不同类型炸药近场水下爆炸下固支方板动态响应研究 [J/OL]. 工程力学[2023-05-04]. http://kns.cnki.net/kcms/detail/11.2595.o3.20221226.1340.003.html.
LAI Z C, DENG S, QIN J, et al. Study on dynamic response of clamped square plates under near-field underwater explosion with different explosives [J/OL]. Engineering Mechanics[2023-05-04]. http://kns.cnki.net/kcms/detail/11.2595.o3.20221226.1340.003.html.
|
[9] |
GAN N, LIU L T, YAO X L, et al. Experimental and numerical investigation on the dynamic response of a simplified open floating slender structure subjected to underwater explosion bubble [J]. Ocean Engineering, 2021, 219: 108308. DOI: 10.1016/j.oceaneng.2020.108308.
|
[10] |
ZHANG A M, YAO X L, LI J. The interaction of an underwater explosion bubble and an elastic-plastic structure [J]. Applied Ocean Research, 2008, 30(3): 159–171. DOI: 10.1016/j.apor.2008.11.003.
|
[11] |
王诗平, 孙士丽, 张阿漫, 等. 冲击波和气泡作用下舰船结构动态响应的数值模拟 [J]. 爆炸与冲击, 2011, 31(4): 367–372. DOI: 10.11883/1001-1455(2011)04-0367-06.
WANG S P, SUN S L, ZHANG A M, et al. Numerical simulation of dynamic response of warship structures subjected to underwater explosion shock waves and bubbles [J]. Explosion and Shock Waves, 2011, 31(4): 367–372. DOI: 10.11883/1001-1455(2011)04-0367-06.
|
[12] |
文彦博, 胡亮亮, 秦健, 等. 近场水下爆炸气泡脉动及水射流的实验与数值模拟研究 [J]. 爆炸与冲击, 2022, 42(5): 053203. DOI: 10.11883/bzycj-2021-0206.
WEN Y B, HU L L, Q J, et al. Experimental study and numerical simulation on bubble pulsation and water jet in near-field underwater explosion [J]. Explosion and Shock Waves, 2022, 42(5): 053203. DOI: 10.11883/bzycj-2021-0206.
|
[13] |
王树山, 李梅, 马峰. 爆炸气泡与自由水面相互作用动力学研究 [J]. 物理学报, 2014, 63(19): 194703. DOI: 10.7498/aps.63.194703.
WANG S S, LI M, MA F. Dynamics of the interaction between explosion bubble and free surface [J]. Acta Physica Sinica, 2014, 63(19): 194703. DOI: 10.7498/aps.63.194703.
|
[14] |
LIU N N, CUI P, REN S F, et al. Study on the interactions between two identical oscillation bubbles and a free surface in a tank [J]. Physics of Fluids, 2017, 29(5): 052104. DOI: 10.1063/1.4984080.
|
[15] |
HUNG C F, HWANGFU J J. Experimental study of the behaviour of mini-charge underwater explosion bubbles near different boundaries [J]. Journal of Fluid Mechanics, 2010, 651: 55–80. DOI: 10.1017/S0022112009993776.
|
[16] |
ZHANG A M, YAO X L, FENG L H. The dynamic behavior of a gas bubble near a wall [J]. Ocean Engineering, 2009, 36(3/4): 295–305. DOI: 10.1016/j.oceaneng.2008.12.006.
|
[17] |
张之凡, 谢宇杰, 王成, 等. 近自由面水下爆炸气泡与破损结构耦合作用机理研究 [J]. 北京理工大学学报, 2022, 42(9): 909–917. DOI: 10.15918/j.tbit1001-0645.2022.103.
ZHANG Z F, XIE Y J, WANG C, et al. Coupling mechanism between damaged structure and underwater explosion bubble near free surface [J]. Transactions of Beijing institute of Technology, 2022, 42(9): 909–917. DOI: 10.15918/j.tbit1001-0645.2022.103.
|
[18] |
贺铭, 张阿漫, 刘云龙. 近场水下爆炸气泡与双层破口结构的相互作用 [J]. 爆炸与冲击, 2020, 40(11): 111402. DOI: 10.11883/bzycj-2020-0110.
HE M, ZHANG A M, LIU Y L. Interaction of the underwater explosion bubbles and nearby double-layer structures with circular holes [J]. Explosion and Shock Waves, 2020, 40(11): 111402. DOI: 10.11883/bzycj-2020-0110.
|
[19] |
金辉, 张庆明, 高春生, 等. 不同边界条件水下爆炸气泡脉动对比的试验研究 [J]. 兵工学报, 2009, 30(S2): 213–217. DOI: CNKI:SUN:BIGO.0.2009-S2-045.
JIN H, ZHANG Q M, GAO C S, et al. Comparison experimental study of underwater explosion bubble pulse among the different boundaries [J]. Acta Armamentarii, 2009, 30(S2): 213–217. DOI: CNKI:SUN:BIGO.0.2009-S2-045.
|
[20] |
金辉, 李兵, 权琳, 等. 不同边界条件下炸药水中爆炸的能量输出结构 [J]. 爆炸与冲击, 2013, 33(3): 325–330. DOI: 10.11883/1001-1455(2013)03-0325-05.
JIN H, LI B, QUAN L, et al. Configuration of explosive energy output in different underwater boundary conditions [J]. Explosion and Shock Waves, 2013, 33(3): 325–330. DOI: 10.11883/1001-1455(2013)03-0325-05.
|
[21] |
LINDAU O, LAUTERBORN W. Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall [J]. Journal of Fluid Mechanics, 2003, 479: 327–348. DOI: 10.1017/S0022112002003695.
|
[22] |
JAYAPRAKASH A, HSIAO C, CHAHINE G. Numerical and experimental study of the interaction of a spark-generated bubble and a vertical wall [J]. Massachusetts Institute of Technology, 2012, 134(3): 381–382. DOI: 10.1115/1.4005688.
|
[23] |
MA X, HUANG B, ZHAO X, ET AL. Comparisons of spark-charge bubble dynamics near the elastic and rigid boundaries [J]. Ultrasonics Sonochemistry, 2018, 43: 80–90. DOI: 10.1016/j.ultsonch.2018.01.005.
|
[24] |
ZHANG A M, CUI P, WANG Y. Experiments on bubble dynamics between a free surface and a rigid wall [J]. Experiments in Fluids, 2013, 54: 1602. DOI: 10.1007/s00348-013-1602-7.
|
[25] |
HUANG G H, ZHANG M D, MA X J, et al. Dynamic behavior of a single bubble between the free surface and rigid wall [J]. Ultrasonics Sonochemistry, 2020, 67: 105147. DOI: 10.1016/j.ultsonch.2020.105147.
|
[26] |
陈志鹏. 气泡与复杂边界耦合机理研究[D]. 江苏镇江: 江苏科技大学, 2019.
CHEN Z P. A study on the coupling effect of interaction between bubbles and complex boundaries [D]. Zhenjiang, Jiangsu, China: Jiangsu University of Science and Technology, 2019.
|
[27] |
TIAN Z L, LIU Y L, ZHANG A M, et al. Jet development and impact load of underwater explosion bubble on solid wall [J]. Applied Ocean Research, 2020, 95: 102013. DOI: 10.1016/j.apor.2019.102013.
|
[28] |
张桂夫, 朱雨建, 杨基明. 水下爆炸冲击凹陷液面诱导射流研究 [J]. 爆炸与冲击, 2018, 38(2): 241–249. DOI: 10.11883/bzycj-2016-0238.
ZHANG G F, ZHU Y J, YANG J M. A study on jet flow induced by underwater explosion at a pit-interface [J]. Explosion and Shock Waves, 2018, 38(2): 241–249. DOI: 10.11883/bzycj-2016-0238.
|
[29] |
XU L Y, WANG S P, LIU Y L, et al. Numerical simulation on the whole process of an underwater explosion between a deformable seabed and a free surface [J]. Ocean Engineering, 2020, 219: 108311. DOI: 10.1016/j.oceaneng.2020.108311.
|
[30] |
LEE E, FINGER M, COLLINS W. JWL equation of state coefficients for high explosives [R]//Office of Scientific and Technical Information Technical Reports, 1973. DOI: 10.2172/4479737.
|
[31] |
李晓杰, 张程娇, 王小红, 等. 水的状态方程对水下爆炸影响的研究 [J]. 工程力学, 2014, 31(8): 46–52. DOI: 10.6052/j.issn.1000-4750.2013.03.0180.
LI X J, ZHANG C J, WANG X H, et al. Numerical study on the effect of equations of state of water on underwater explosions [J]. Engineering Mechanics, 2014, 31(8): 46–52. DOI: 10.6052/j.issn.1000-4750.2013.03.0180.
|
[32] |
YANG X Q, YANG H, GARDNER L, et al. A continuous dynamic constitutive model for normal-and high-strength structural steels [J]. Journal of Constructional Steel Research, 2022, 192: 107254. DOI: 10.1016/j.jcsr.2022.107254.
|
[33] |
孙远翔, 田俊宏, 张之凡, 等. 含铝炸药近场水下爆炸冲击波的实验及数值模拟 [J]. 振动与冲击, 2020, 39(14): 171–178, 193. DOI: 10.13465/j.cnki.jvs.2020.14.025.
SUN Y X, TIAN J H, ZHANG Z F, et al. Experiment and numerical simulation study on the near-field underwater explosion of aluminized explosive [J]. Journal of Vibration and Shock, 2020, 39(14): 171–178, 193. DOI: 10.13465/j.cnki.jvs.2020.14.025.
|
[34] |
COLE R H. Underwater explosion [M]. New Jersey: Princeton University Press, 1948.
|
[35] |
HU J, CHEN Z Y, ZHANG X D, et al. Underwater explosion in centrifuge. part I: validation and calibration of scaling laws [J]. Science China Technological Sciences, 2017, 60(11): 1638–1657. DOI: 10.1007/s11431-017-9083-0.
|