Citation: | CHEN Ziwei, WANG Zhongqi, ZENG Linghui. A method for predicting peak pressure in an explosion shock tube based on BP neural network[J]. Explosion And Shock Waves, 2024, 44(5): 054101. doi: 10.11883/bzycj-2023-0187 |
[1] |
徐春光, 白晓征, 刘瑜, 等. 爆炸激波管管口稀疏波对试验段的影响 [J]. 国防科技大学学报, 2011(4): 1–5. DOI: 10.3969/j.issn.1001-2486.2011.04.001. DOI: 10.3969/j.issn.1001-2486.2011.04.001.
XU C G, BAI X Z, LIU Y, et al. Research on the influence of rarefaction wave to the experimental section in blast shock tube [J]. Journal of National University of Defense Technology, 2011(4): 1–5. DOI: 10.3969/j.issn.1001-2486.2011.04.001. DOI: 10.3969/j.issn.1001-2486.2011.04.001.
|
[2] |
张军, 黄含军, 王军评, 等. 炸药驱动式爆炸管的载荷计算 [J]. 装备环境工程, 2021, 18(5): 21–27. DOI: 10.7643/issn.1672-9242.2021.05.004.
ZHANG J, HUANG H J, WANG J P, et al. Simulation on the blast load inside the explosively drived shock tube [J]. Equipment Environment Engineering, 2021, 18(5): 21–27. DOI: 10.7643/issn.1672-9242.2021.05.004.
|
[3] |
崔云霄, 王万鹏, 王雷元, 等. 压缩气体驱动大型激波管内部流场的数值模拟 [C]// 2014年中国计算力学大会论文集. 2014: 528–534.
CUI Y X, WANG W P, WANG L Y, et al. Numerical simulation of Flow-Field in shockwave tube driven by condensed gas [C]//Proceedings of the 2014 Chinese Conference on Computational Mechanics, 2014: 528–534.
|
[4] |
ISMAIL A, EZZELDIN M, EL-DAKHAKHNI W, et al. Blast load simulation using conical shock tube systems [J]. International Journal of Protective Structures, 2020, 11(2): 135–158. DOI: 10.1177/2041419619858098.
|
[5] |
刘瑞朝, 任辉启, 徐翔云. 大型爆炸激波管数值模拟 [J]. 防护工程, 2009, 31(1): 31–35.
LIU R C, REN H Q, XU X Y. Numerical simulation of large blast simulators [J]. Protective Engineering, 2009, 31(1): 31–35.
|
[6] |
谢全民. 爆破振动信号分形维数相关性研究 [J]. 振动与冲击, 2021, 40(22): 48–51, 59. DOI: 10.13465/j.cnki.jvs.2021.22.007.
XIE Q M. Correlation study on the fractal dimension of blasting vibration signals [J]. Journal of Vibration and Shock, 2021, 40(22): 48–51, 59. DOI: 10.13465/j.cnki.jvs.2021.22.007.
|
[7] |
XU Y, HUANG Y M, MA G W. A beetle antennae search improved BP neural network model for predicting multi-factor-based gas explosion pressures [J]. Journal of Loss Prevention in the Process Industries, 2020, 65: 104117. DOI: 10.1016/j.jlp.2020.104117.
|
[8] |
袁格侠, 刘宏昭, 钱学梅, 等. 求解超高压筒形容器爆破压力的神经网络方法 [J]. 兵器材料科学与工程, 2010, 33(2): 31–34. DOI: 10.3969/j.issn.1004-244X.2010.02.009.
YUAN G X, LIU H Z, QIAN X M, et al. ANN-based prediction of bursting pressure under ultra-high pressure for cylindrical vessel [J]. Ordnance Material Science and Engineering, 2010, 33(2): 31–34. DOI: 10.3969/j.issn.1004-244X.2010.02.009.
|
[9] |
唐泽斯, 郭进, 王金贵, 等. 基于人工神经网络的气体泄爆最大超压预测研究 [J]. 中国安全生产科学技术, 2020, 16(4): 56–62. DOI: 10.11731/j.issn.1673-193x.2020.04.009.
TANG Z S, GUO J, WANG J G, et al. Study on prediction of maximum overpressure in gas explosion venting based on artificial neural network [J]. Journal of Safety Science and Technology, 2020, 16(4): 56–62. DOI: 10.11731/j.issn.1673-193x.2020.04.009.
|
[10] |
李江涛. 矿井瓦斯爆炸超压值分布的神经网络预测方法 [J]. 煤矿安全, 2013, 44(2): 157–160. DOI: 10.13347/j.cnki.mkaq.2013.02.012.
LI J T. Overpressure distribution prediction of mine gas explosion based on artificial neural networks [J]. Safety in Coal Mines, 2013, 44(2): 157–160. DOI: 10.13347/j.cnki.mkaq.2013.02.012.
|
[11] |
严国建, 周明安, 余轮, 等. 空气中爆炸冲击波超压峰值的预测 [J]. 采矿技术, 2011, 11(5): 89–90, 112. DOI: 10.3969/j.issn.1671-2900.2011.05.035.
YAN G J, ZHOU M A, YU L, et al. Prediction of the peak overpressure of explosive shock waves in air [J]. Mining Technology, 2011, 11(5): 89–90, 112. DOI: 10.3969/j.issn.1671-2900.2011.05.035.
|
[12] |
施建俊, 李庆亚, 张琪, 等. 基于Matlab和BP神经网络的爆破振动预测系统 [J]. 爆炸与冲击, 2017, 37(6): 1087–1092. DOI: 10.11883/1001-1455(2017)06-1087-06.
SHI J J, LI Q Y, ZHANG Q, et al. Forecast system for blasting vibration velocity peak based on Matlab and BP neural network [J]. Explosion and Shock Waves, 2017, 37(6): 1087–1092. DOI: 10.11883/1001-1455(2017)06-1087-06.
|
[13] |
GUO Q P, YANG S J, WANG Y C, et al. Prediction research for blasting peak particle velocity based on random GA-BP network group [J]. Arabian Journal of Geosciences, 2022, 15(15): 1351. DOI: 10.1007/s12517-022-10615-3.
|
[14] |
郭璇, 马思远, 郭一帆, 等. 基于BP神经网络的围岩介质爆炸峰值压力预测 [J]. 振动与冲击, 2019, 38(3): 199–206. DOI: 10.13465/j.cnki.jvs.2019.03.028.
GUO X, MA S Y, GUO Y F, et al. Blast peak pressure prediction for surrounding rock medium based on BP neural network method [J]. Journal of Vibration and Shock, 2019, 38(3): 199–206. DOI: 10.13465/j.cnki.jvs.2019.03.028.
|
[15] |
陈俊霖, 侯麒麟, 宁文学, 等. 基于BP神经网络的火箭弹射击效率计算方法 [J]. 火力与指挥控制, 2022, 47(6): 87–92. DOI: 10.3969/j.issn.1002-0640.2022.06.014.
CHEN J L, HOU Q L, NING W X, et al. Calculation method of rocket firing efficiency based on BP neural network [J]. Fire Control & Command Control, 2022, 47(6): 87–92. DOI: 10.3969/j.issn.1002-0640.2022.06.014.
|
[16] |
焦李成, 杨淑媛, 刘芳, 等. 神经网络七十年: 回顾与展望 [J]. 计算机学报, 2016, 39(8): 1697–1716. DOI: 10.11897/SP.J.1016.2016.01697.
JIAO L C, YANG S Y, LIU F, et al. Seventy years beyond neural network: retrospect and prospect [J]. Chinese Journal of Computers, 2016, 39(8): 1697–1716. DOI: 10.11897/SP.J.1016.2016.01697.
|
[17] |
段宝福, 张猛, 李俊猛. 逐孔起爆震动参数预报的BP神经网络模型 [J]. 爆炸与冲击, 2010, 30(4): 401–406. DOI: 10.11883/1001-1455(2010)04-0401-06.
DUAN B F, ZHANG M, LI J M. A BP neural network model for forecasting of vibration parameters from hole by hole detonation [J]. Explosion and Shock Waves, 2010, 30(4): 401–406. DOI: 10.11883/1001-1455(2010)04-0401-06.
|
[18] |
范勇, 裴勇, 杨广栋, 等. 基于改进PSO-BP神经网络的爆破振动速度峰值预测 [J]. 振动与冲击, 2022, 41(16): 194–203, 302. DOI: 10.13465/j.cnki.jvs.2022.16.025.
FAN Y, PEI Y, YANG G D, et al. Prediction of blasting vibration velocity peak based on an improved PSO-BP neural network [J]. Journal of Vibration and Shock, 2022, 41(16): 194–203, 302. DOI: 10.13465/j.cnki.jvs.2022.16.025.
|