Citation: | GUO Liuwei, ZHAI Zhaohui, HAN Xiufeng, WANG Wei, HE Yu, GUI Yulin. Temperature effect on the shock initiation and metal accelerating behavior for TATB/RDX-based explosive[J]. Explosion And Shock Waves, 2024, 44(1): 012301. doi: 10.11883/bzycj-2023-0192 |
[1] |
WANG Y, SONG S W, HUANG C, et al. Hunting for advanced high-energy-density materials with well-balanced energy and safety through an energetic host-guest inclusion strategy [J]. Journal of Materials Chemistry A, 2019, 33(7): 19248–19257. DOI: 10.1039/C9TA04677A.
|
[2] |
WATT D, PEUGETOT F, DOHERTY R, et al. Reduced sensitivity RDX, where are we? [C] // Proceedings of the 35th International Annual Conference of ICT. Karlsruhe: ICT, 2004.
|
[3] |
ELBEIH A, ZEMAN S, PACHMAN J. Effect of polar plasticizers on the characteristics of selected cyclic nitramines [J]. Central European Journal of Energetic Materials, 2013, 10(3): 339–350. DOI: 10.12733/JICS20102176.
|
[4] |
WEI X F, ZHANG A B, MA Y, et al. Toward low-sensitive and high-energetic cocrystal Ⅲ: thermodynamics of the energetic-energetic cocrystal formation [J]. CrystEngComm, 2015, 17(47): 9037–9047. DOI: 10.1039/C5CE02009C.
|
[5] |
GONG F Y, ZHANG J H, DING L, et al. Mussel-inspired coating of energetic crystals: a compact core-shell structure with highly enhanced thermal stability [J]. Chemical Engineering Journal, 2017, 309: 140–150. DOI: 10.1016/J.CEJ.2016.10.020.
|
[6] |
SHI Y B, BAI L F, LI J H, et al. Theoretical calculation into the effect of molar ratio on the structures, stability, mechanical properties and detonation performance of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane/1,3,5-trinitro-1,3,5-triazacyco-hexane cocrys-tal [J]. Journal of Molecular Modeling, 2019, 25(25): 299. DOI: 10.1007/s00894-019-4181-6.
|
[7] |
SURESH K, AULAKH D, PUREWAL J, et al. Optimizing hydrogen storage in MOFs through engineering of crystal morphology and control of crystal size [J]. Journal of the American Chemical Society, 2021, 143: 10727–10734. DOI: 10.1021/JACS.1C04926.
|
[8] |
CAI J X, XIE C P, XIONG J, et al. High performance and heat-resistant pyrazole-1,2,4-triazole energetic materials: tuning the thermal stability by asymmetric framework and azo-bistriazole bridge [J]. Chemical Engineering Journal, 2022, 433: 134480. DOI: 10.1016/J.CEJ.2021.134480.
|
[9] |
QU Y Z, QIAN W, ZHANG J H, et al. Interfacial engineered RDX/TATB energetic co-particles for enhanced safety performance and thermal stability [J]. Dalton Transactions, 2022, 51(27): 10527–10534. DOI: 10.1039/D2DT01421A.
|
[10] |
郭刘伟, 刘宇思, 汪斌, 等. 高温下TATB基钝感炸药爆轰波波阵面曲率效应实验研究 [J]. 含能材料, 2017, 25(2): 138–143. DOI: 10.11943/j.issn.1006-9941.2017.02.008.
GUO L W, LIU Y S, WANG B, et al. Front curvature rate stick experiment of TATB based insensitive high explosives at high temperature [J]. Chinese Journal of Energetic Materials, 2017, 25(2): 138–143. DOI: 10.11943/j.issn.1006-9941.2017.02.008.
|
[11] |
郭刘伟, 刘宇思, 黄宇, 等. 宽温域环境JB-9014炸药爆轰波波阵面曲率效应实验 [J]. 含能材料, 2019, 27(12): 1062–1068. DOI: 10.11943/CJEM2018323.
GUO L W, LIU Y S, HUANG Y, et al. Front curvature rate stick experiment of JB-9014 over a wide temperature range [J]. Chinese Journal of Energetic Materials, 2019, 27(12): 1062–1068. DOI: 10.11943/CJEM2018323.
|
[12] |
OLIVIER B. Detonation velocity of a TATB-based high-explosive as a function of density, temperature and curvature [C] // Proceedings of the 15th International Detonation Symposium. ED, 2014: 477–484.
|
[13] |
HILL L G, ASLAM T D. Detonation shock dynamics calibration for PBX 9502 with temperature, density, and material lot variations [C] // Proceedings of the 14th International Detonation Symposium. USA, 2010, 52(3): 779–788. DOI: 10.1109/TAC.2007.892382.
|
[14] |
SOUERS P C, LAUDERBACH L, GARZA, R, et al. LX-17 and ufTATB data for corner-turning, failure and detonation [C] // Proceedings of the 14th International Detonation Symposium. USA, 2010, 52(3): 716–726. DOI: 10.1109/TAC.2007.892382.
|
[15] |
WHITWORTH N J. CREST modelling of PBX 9502 corner turning experiments at different initial temperatures [J]. Journal of Physics: Conference Series, 2014, 500(5): 1–7. DOI: 10.1088/1742-6596/500/5/052050.
|
[16] |
TAN K Y, WEN S G, HAN Y. Shock initiation characteristics of explosives at near-ambient temperatures [J]. Chinese Journal of Energetic Materials, 2016, 24(9): 905–910. DOI: 10.11943/J.ISSN.1006-9941.201609.015.
|
[17] |
GUSTAVSEN R L, GEHR R J, BUCHOLTZ S M, et al. Shock initiation of the tri-amino-tri-nitro-benzene based explosive PBX 9502 cooled to –55°C [J]. Journal of Applied Physics, 2012, 112(7): 074909. DOI: 10.1063/1.4757599.
|
[18] |
HOLLOWELL B C, GUSTAVSEN R L, DATTELBAUM D M, et al. Shock initiation of the TATB-based explosive PBX9502 cooled to 77 Kelvin [J]. Journal of Physics: Conference Series, 2014, 500(18): 182014. DOI: 10.1088/1742-6596/500/18/182014.
|
[19] |
GUSTAVSEN R L, GEHR R J, BUCHOLTZ S M, et al. Shock initiation of the TATB-based explosive PBX-9502 heated to –76 °C [C] // Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter 2015. NY, USA: AIP Publishing. DOI: 10.1063/1.4971475.
|
[20] |
FRANCOIS E G, SANDERS V E, MORRIS J. Front curvature and rate stick data on formulations containing DAAF, TATB, RDX and HMX including diameter and temperature effects [C] // Shock Compression of Condensed Matter-2011. Chicago, Illinois: American Physical Society, 2011, DOI: 10.1063/1.3686346.
|
[21] |
TARVER C M. Detonation reaction zones in condensed explosives [C] // 14th APS Topical Conference on SCCM. Baltimore, MD, USA: American Physical Society, 2005.
|
[22] |
GUSTAVSEN R L, BARTRAM B D, SANCHEZ N J. Detonation wave profiles measured in plastic bonded explosives using 1 550 nm photon Doppler velocimetry [C] // Proceedings of the 16th Conference of the American-Physical-Society-Topical-Group on Shock Compression of Condensed Matter. NY, AIP Publishing, 2009. DOI: 10.1063/1.3295117.
|
[23] |
ZHAI Z H, LIU Q, GUO L W, et al. Design of terahertz-wave Doppler interferometric velocimetry for detonation physics [J]. Applied Physics Letters, 2020, 116(16): 161102. DOI: 10.1063/1.5142415.
|
[24] |
GERHARD M, REN B G, RAHM M. Terahertz Mach-Zehnder interferometer based on a hollow-core metallic ridge waveguide [J]. Applied Physics Letters, 2015, 106(17): 171112. DOI: 10.1063/1.4919588.
|
[25] |
CHEN J C, KAUSHIK S. Terahertz interferometer that senses vibrations behind barriers [J]. IEEE Photonics Technology Letters, 2007, 19(7): 486–488. DOI: 10.1109/LPT.2007.893583.
|
[26] |
HUANG X L, ZHAI Z H, FU H, et al. Experimental investigation of the deflagration rate for PBX utilizing terahertz-wave-based Doppler velocimetry [J]. Journal of the Optical Society of America B, 2022, 39(3): A25–A30. DOI: 10.1364/JOSAB.444723.
|
[27] |
PENG W Y, YANG S Q, SHU J X, et al. Experimental investigation of shock response to an insensitive explosive under double-shock wave [J]. International Journal of Impact Engineering, 2023, 173(1): 1–11. DOI: 10.1016/j.ijimpeng.2022.104489.
|
[28] |
舒俊翔, 裴红波, 黄文斌, 等. 几种常用炸药的爆压与爆轰反应区精密测量 [J]. 爆炸与冲击, 2022, 42(5): 052301. DOI: 10.11883/bzycj-2021-0305.
SHU J X, PEI H B, HUANG W B, et al. Accurate measurements of detonation pressure and detonation reaction zones of several commonly-used explosives [J]. Explosion and Shock Waves, 2022, 42(5): 052301. DOI: 10.11883/bzycj-2021-0305.
|