Citation: | WANG Mingtao, CHENG Yuehua, WU Hao. Study on blast loadings of cylindrical charges air explosion[J]. Explosion And Shock Waves, 2024, 44(4): 043201. doi: 10.11883/bzycj-2023-0197 |
[1] |
US Department of the Army. Fundamentals of protective design for conventional weapons: TM 5-855-1 [S]. Washington, USA: US Department of the Army, 1986.
|
[2] |
American Society of Civil Engineers. Blast protection of buildings: ASCE 59-11 [S]. Reston, Virginia, USA: American Society of Civil Engineers, 2011.
|
[3] |
Canadian Standards Association. Design and assessment of buildings subjected to blast loads: CSA/S850-23 [S]. Toronto, Canda: Canadian Standards Association, 2023.
|
[4] |
US Department of Defense. Structures to resist the effects of accidental explosions, with change 2: UFC 3-340-02 [S]. Washington, USA: US Department of Defense, 2014.
|
[5] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 爆破安全规程: GB 6722-2014 [S]. 北京: 中国标准出版社, 2014.
|
[6] |
STONER R G, BLEAKNEY W. The attenuation of spherical shock waves in air [J]. Journal of Applied Physics, 1948, 19(7): 670–678. DOI: 10.1063/1.1698189.
|
[7] |
BRODE H L. Numerical solutions of spherical blast waves [J]. Journal of Applied Physics, 1955, 26(6): 766–775. DOI: 10.1063/1.1722085.
|
[8] |
BAKER W E. Explosions in air [M]. Austin, USA: University of Texas Press, 1974: 6–10.
|
[9] |
HENRYCH J, ABRAHAMSON G R. The dynamics of explosion and its use [M]. Amsterdam New York, USA: Elsevier Science Publishing Company, 1979: 218.
|
[10] |
MILLS C A. The design of concrete structures to resist explosions and weapon effects [C]// The 1st International Conference on Concrete for Hazard Protections. Edinburgh, UK: European Cement Association, 1987: 11–15.
|
[11] |
WU C Q, HAO H. Modeling of simultaneous ground shock and airblast pressure on nearby structures from surface explosions [J]. International Journal of Impact Engineering, 2005, 31(6): 699–717. DOI: 10.1016/j.ijimpeng.2004.03.002.
|
[12] |
KINNEY G F, GRAHAM K J, KENNETH J. Explosive shocks in air [M]. Berlin, Germany: Springer Verlag, 1985: 1–17.
|
[13] |
SHI Y C, WANG N, CUI J, et al. Experimental and numerical investigation of charge shape effect on blast load induced by near-field explosions [J]. Process Safety and Environmental Protection, 2022, 165: 266–277. DOI: 10.1016/j.psep.2022.07.018.
|
[14] |
ISMAIL M M, MURRAY S G. Study of the blast waves from the explosion of nonspherical charges [J]. Propellants, Explosives, Pyrotechnics, 1993, 18: 132–138. DOI: 10.1002/prep.19930180304.
|
[15] |
SIMOENS B, LEFEBVRE M H, MINAMI F. Influence of different parameters on the TNT-equivalent of an explosion [J]. Central European Journal of Energetic Materials, 2011, 8(1): 53–67.
|
[16] |
ANASTACIO A C, KNOCK C. Radial blast prediction for high explosive cylinders initiated at both ends [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(4): 682–687. DOI: 10.1002/prep.201500302.
|
[17] |
KNOCK C, DAVIES N. Predicting the peak pressure from the curved surface of detonating cylindrical charges [J]. Propellants, Explosives, Pyrotechnics, 2011, 36(3): 203–209. DOI: 10.1002/prep.201000001.
|
[18] |
KNOCK C, DAVIES N. Predicting the impulse from the curved surface of detonating cylindrical charges [J]. Propellants, Explosives, Pyrotechnics, 2011, 36(2): 105–109. DOI: 10.1002/prep.201000002.
|
[19] |
KNOCK C, DAVIES N, REEVES T. Predicting blast waves from the axial direction of a cylindrical charge [J]. Propellants, Explosives, Pyrotechnics, 2015, 40(2): 169–179. DOI: 10.1002/prep.201300188.
|
[20] |
GAO C, KONG X Z, FANG Q, et al. Numerical investigation on free air blast loads generated from center-initiated cylindrical charges with varied aspect ratio in arbitrary orientation [J]. Defence Technology, 2022, 18(9): 1662–1678. DOI: 10.1016/j.dt.2021.07.013.
|
[21] |
WU C Q, FATTORI G, WHITTAKER A, et al. Investigation of air-blast effects from spherical-and cylindrical-shaped charges [J]. International Journal of Protective Structures, 2010, 1(3): 345–362. DOI: 10.1260/2041-4196.1.3.345.
|
[22] |
HU Y, CHEN L, FANG Q, et al. Blast loading model of the RC column under close-in explosion induced by the double-end-initiation explosive cylinder [J]. Engineering Structures, 2018, 175: 304–321. DOI: 10.1016/j.engstruct.2018.08.013.
|
[23] |
SHERKAR P, SHIN J, WHITTAKER A, et al. Influence of charge shape and point of detonation on blast-resistant design [J]. Journal of Structural Engineering, 2016, 142(2): 1–11. DOI: 10.1061/(asce)st.1943-541x.0001371.
|
[24] |
XIAO W F, ANDRAE M, GEBBEKEN N. Effect of charge shape and initiation configuration of explosive cylinders detonating in free air on blast-resistant design [J]. Journal of Structural Engineering, 2020, 146(8): 1–13. DOI: 10.1061/(asce)st.1943-541x.0002694.
|
[25] |
THAM C Y. Numerical simulation on the interaction of blast waves with a series of aluminum cylinders at near-field [J]. International Journal of Impact Engineering, 2009, 36(1): 122–131. DOI: 10.1016/j.ijimpeng.2007.12.011.
|
[26] |
SIMOENS B, LEFEBVRE M. Influence of the shape of an explosive charge: quantification of the modification of the pressure field [J]. Central European Journal of Energetic Materials, 2015, 12(2): 195–213.
|
[27] |
PAPE R, MNISZEWSKI K R, LONGINOW A, et al. Explosion phenomena and effects of explosions on structures Ⅲ: methods of analysis (explosion damage to structures) and example cases [J]. Practice Periodical on Structural Design and Construction, 2010, 15(2): 153–169. DOI: 10.1061/(ASCE)SC.1943-5576.0000040.
|
[28] |
KNOCK C, DAVIES N. Blast waves from cylindrical charges [J]. Shock Waves, 2013, 23(4): 337–343. DOI: 10.1007/s00193-013-0438-7.
|
[29] |
YANG T C, LUO Y Z, HU G Q, et al. Probability distribution and determination of blast loading during structural blast resistant study [J]. Shock and Vibration, 2022. DOI: Artn 736728810.1155/2022/7367288.
|
[30] |
WISOTSKI J, SNYER. W H. Characteristics of blast waves obtained from cylindrical high explosive charges: 80210, DRI-2286 [R]. Denver, USA: University of Denver, Denver Research Institute, 1965.
|
[31] |
PLOOSTER M N. Blast effects from cylindrical explosive charges: experimental measurements: NWC TP 6382 [R]. China Lake, USA: Naval Report Centre, 1982.
|
[32] |
SU Q, WU H, SUN H S, et al. Experimental and numerical studies on dynamic behavior of reinforced UHPC panel under medium-range explosions [J]. International Journal of Impact Engineering, 2021, 148: 1–23. DOI: 10.1016/j.ijimpeng.2020.103761.
|
[33] |
TIAN S Z, YAN Q S, DU X L, et al. Experimental and numerical studies on the dynamic response of precast concrete slabs under blast load [J]. Journal of Building Engineering, 2023, 70: 1–18. DOI: 10.1016/j.jobe.2023.106425.
|
[34] |
WHARTON R K, FORMBY S A, MERRIFIELD R. Airblast TNT equivalence for a range of commercial blasting explosives [J]. Journal of Hazardous Materials, 2000, 79(1): 31–39. DOI: 10.1016/S0304-3894(00)00168-0.
|